Dendrimer-star polymer and block copolymer prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization with dendritic chain transfer agent

2005 ◽  
Vol 43 (24) ◽  
pp. 6379-6393 ◽  
Author(s):  
Chun-Yan Hong ◽  
Ye-Zi You ◽  
Jun Liu ◽  
Cai-Yuan Pan
2018 ◽  
Vol 42 (15) ◽  
pp. 12853-12864 ◽  
Author(s):  
Juan Han ◽  
Yunfeng Cai ◽  
Yun Wang ◽  
Xiaohui Dai ◽  
Lei Wang ◽  
...  

A novel type of responsive mixed double hydrophilic block copolymer (DHBC)-based multifunctional visual thermosensor for the detection of Al3+ and Fe3+ was designed and synthesized based on reversible addition fragmentation chain transfer (RAFT) polymerization.


RSC Advances ◽  
2015 ◽  
Vol 5 (119) ◽  
pp. 98559-98565 ◽  
Author(s):  
Muhammad Mumtaz ◽  
Karim Aissou ◽  
Dimitrios Katsigiannopoulos ◽  
Cyril Brochon ◽  
Eric Cloutet ◽  
...  

Controlled polymerization and self-assembly of novel block copolymer electrolytes.


2020 ◽  
Vol 11 (21) ◽  
pp. 3564-3572
Author(s):  
Jing Wan ◽  
Bo Fan ◽  
Yiyi Liu ◽  
Tina Hsia ◽  
Kaiyuan Qin ◽  
...  

The first room temperature synthesis of diblock copolymer nano-objects with different morphologies using ultrasound (990 kHz) initiated reversible addition-fragmentation chain transfer PISA (sono-RAFT-PISA) in aqueous system.


2021 ◽  
Vol 899 ◽  
pp. 525-531
Author(s):  
Oleg A. Lebedev ◽  
Alexandra O. Grigoreva ◽  
Sergey D. Zaitsev

The influence of various tacticity regulators on the reversible addition-fragmentation (RAFT) polymerization of 2,2,3,3-tetrafluoropropyl methacrylate in the presence of 2-cyano-2-propyldodecyltritiocarbonate as an chain transfer agent was investigated. Among Lewis acids considered, the polymerization of TFPMA in dioxane with ZnBr2 turned out to be the most effective from the point of view of tacticity; the polymer with the highest isotacticity is formed. The addition of hexafluoroisopropanol leads to an increase in the heterotacticity and a decrease in the isotacticity of the polymer chain.


2021 ◽  
Vol 899 ◽  
pp. 638-643
Author(s):  
Artem Vlasov ◽  
Alexandra O. Grigoreva ◽  
Sergey D. Zaitsev

pH-switchable chain transfer agent 1-cyano-1-methylethyl (phenyl)(pyridin-4-yl)-carbamodithioate (CMPC) was synthesized and reversible addition-fragmentation chain-transfer (RAFT) polymerization of styrene in presence of CMPC was studied. It was shown that presence of CMPC affects molar mass distribution and kinetic features and realizes supposed mechanism of RAFT polymerization. Different effect of CMPC on polymerization of styrene in presence of protic acids was studied.


2014 ◽  
Vol 5 (17) ◽  
pp. 5160-5167 ◽  
Author(s):  
Swapnil R. Tale ◽  
Ligeng Yin ◽  
Theresa M. Reineke

Well-defined amphiphilic diblock terpolymers of poly(ethylene-alt-propylene)–poly[(N,N′-dimethylacrylamide)-grad-poly(6-deoxy-6-methacrylamido trehalose)] (denoted as PEP–poly(DMA-grad-MAT) or PT) have been synthesized using a PEP macromolecular chain transfer agent by reversible addition–fragmentation chain transfer (RAFT) polymerization.


2007 ◽  
Vol 60 (6) ◽  
pp. 396 ◽  
Author(s):  
Andrew P. Vogt ◽  
Sudershan R. Gondi ◽  
Brent S. Sumerlin

Hyperbranched copolymers of N-isopropylacrylamide (NIPAM) and styrene were prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization in the presence of a novel acryloyl trithiocarbonate, namely 1-[3-(2-methyl-2-dodecylsulfanylthiocarbonylsulfanylpropionyloxy)propyl]-1H-[1,2,3]triazol-4-ylmethyl acrylate. By employing an example of ‘click chemistry’, we were able to prepare the vinyl RAFT chain transfer agent (CTA) by copper-catalyzed 1,3-dipolar cycloaddition of an azido-functionalized trithiocarbonate and propargyl acrylate. The resulting CTA facilitated the preparation of highly branched poly(N-isopropylacrylamide) (PNIPAM) and polystyrene. Interestingly, the branched PNIPAM demonstrated a reduced lower critical solution temperature (LCST) of 25°C as opposed to the conventional value of 32°C expected for linear PNIPAM, an effect attributed to increased contribution of hydrophobic dodecyl trithiocarbonate end groups.


2021 ◽  
Author(s):  
Siva Ponnupandian ◽  
Prantik Mondal ◽  
Thomas Becker ◽  
Richard Hoogenboom ◽  
Andrew B Lowe ◽  
...  

This investigation reports the preparation of a tailor-made copolymer of furfuryl methacrylate (FMA) and trifluoroethyl methacrylate (TFEMA) via reversible addition-fragmentation chain transfer (RAFT) polymerization. The furfuryl groups of the copolymer...


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1164
Author(s):  
Angeliki Chroni ◽  
Thomas Mavromoustakos ◽  
Stergios Pispas

The focus of this study is the development of highly stable losartan potassium (LSR) polymeric nanocarriers. Two novel amphiphilic poly(n-butyl acrylate)-block-poly(oligo(ethylene glycol) methyl ether acrylate) (PnBA-b-POEGA) copolymers with different molecular weight (Mw) of PnBA are synthesized via reversible addition fragmentation chain transfer (RAFT) polymerization, followed by the encapsulation of LSR into both PnBA-b-POEGA micelles. Based on dynamic light scattering (DLS), the PnBA30-b-POEGA70 and PnBA27-b-POEGA73 (where the subscripts denote wt.% composition of the components) copolymers formed micelles of 10 nm and 24 nm in water. The LSR-loaded PnBA-b-POEGA nanocarriers presented increased size and greater mass nanostructures compared to empty micelles, implying the successful loading of LSR into the inner hydrophobic domains. A thorough NMR (nuclear magnetic resonance) characterization of the LSR-loaded PnBA-b-POEGA nanocarriers was conducted. Strong intermolecular interactions between the biphenyl ring and the butyl chain of LSR with the methylene signals of PnBA were evidenced by 2D-NOESY experiments. The highest hydrophobicity of the PnBA27-b-POEGA73 micelles contributed to an efficient encapsulation of LSR into the micelles exhibiting a greater value of %EE compared to PnBA30-b-POEGA70 + 50% LSR nanocarriers. Ultrasound release profiles of LSR signified that a great amount of the encapsulated LSR is strongly attached to both PnBA30-b-POEGA70 and PnBA27-b-POEGA73 micelles.


Sign in / Sign up

Export Citation Format

Share Document