Ring-opening polymerization of trimethylene carbonate by poly(ethylene glycol) in the presence of HCl·Et2O as a monomer activator

2006 ◽  
Vol 44 (13) ◽  
pp. 4235-4241 ◽  
Author(s):  
Hoon Hyun ◽  
Moon Suk Kim ◽  
Gilson Khang ◽  
Hai Bang Lee
Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1438
Author(s):  
Silvio Curia ◽  
Feifei Ng ◽  
Marie-Emérentienne Cagnon ◽  
Victor Nicoulin ◽  
Adolfo Lopez-Noriega

This article presents the evaluation of diblock and triblock poly(ethylene glycol)-b-poly(1,3-trimethylene carbonate) amphiphilic copolymers (PEG-PTMCs) as excipients for the formulation of long-acting injectables (LAIs). Copolymers were successfully synthesised through bulk ring-opening polymerisation. The concomitant formation of PTMC homopolymer could not be avoided irrespective of the catalyst amount, but the by-product could easily be removed by gel chromatography. Pure PEG-PTMCs undergo faster erosion in vivo than their corresponding homopolymer. Furthermore, these copolymers show outstanding stability compared to their polyester analogues when formulated with amine-containing reactive drugs, which makes them particularly suitable as LAIs for the sustained release of drugs susceptible to acylation.


2020 ◽  
Vol 04 ◽  
Author(s):  
Manu Singhai ◽  
Sankha Bhattacharya

Abstract:: Polysarcosine (psar) is a non-ionic hydrophilic polypeptoid with numerous biologically relevant properties. Polysarcosine is poly (n-methylated glycine) and has been reported first by wesley and co-workers in the 1920s. Polysarcosine was first synthesized via ring-opening polymerization (rop) of sarcosine n-carboxyanhydride, using high-vacuum techniques. Overall, findings highlight the potential of poly(sarcosine) as an alternative corona-forming polymer to poly (ethylene glycol)-based analogues of (polymerization-induced self-assembly) pisa assemblies for use in various pharmaceutical and biomedical applications. Numerous studies suggested that such polypeptoids hold enormous potential for many biomedical applications, including protein delivery, colloidal stabilization, and nanomedicine.


2015 ◽  
Vol 749 ◽  
pp. 433-436
Author(s):  
Chih Kuang Chen ◽  
Wen Jen Lin ◽  
Guan You Chen ◽  
Yu Te Lin ◽  
Rong Siou Jhu ◽  
...  

With the advancement of nanotechnology and material chemistry, micelles have emerged as one of the most attractive carriers for anticancer drug delivery. In this study, a newly developed polymerization technique termed as “sequential ring-opening polymerization (SROP)“ was used to synthesize poly (ethylene glycol)-block-polylactide-block-polylactide (PEG-PLA-PLAs). Utilizing the features of SROP, well-controlled chain length of two different PLA blocks by using PEG as initiator can be achieved. Two types of PEG-PLA-PLAs, PEG-PLA11-PLA11 and PEG-PLA18-PLA18, were successfully synthesized and characterized. Having amphiphilic properties, PEG-PLA-PLAs were used to form micelles through self-assembly. The effects of PLA length on the resultant micelles were thoroughly investigated.


Sign in / Sign up

Export Citation Format

Share Document