Polarity reversal of nanoparticle surfaces by the use of light-sensitive polymeric emulsifiers

2014 ◽  
Vol 53 (2) ◽  
pp. 200-205 ◽  
Author(s):  
Robert Dorresteijn ◽  
Nils Billecke ◽  
Sapun H. Parekh ◽  
Markus Klapper ◽  
Klaus Müllen
2019 ◽  
Vol 139 (2) ◽  
pp. 78-84
Author(s):  
Tsuyoshi Tohmine ◽  
Kumiko Iguchi ◽  
Keita Sonoda ◽  
Hiroaki Miyake ◽  
Yasuhiro Tanaka ◽  
...  
Keyword(s):  

iScience ◽  
2021 ◽  
pp. 102693
Author(s):  
Han Wang ◽  
Haiwang Liu ◽  
Mu Wang ◽  
Meirong Huang ◽  
Xiangcheng Shi ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1065
Author(s):  
Houssem Eddine Nechmi ◽  
Michail Michelarakis ◽  
Abderrahmane (Manu) Haddad ◽  
Gordon Wilson

Negative and positive partial discharge inception voltages and breakdown measurements are reported in a needle-plane electrode system as a function of pressure under AC voltage for natural gases (N2, CO2, and O2/CO2), pure NovecTM gases (C4F7N and C5F10O) and NovecTM in different natural gas admixtures. For compressed 4% C4F7N–96% CO2 and 6% C5F10O–12% O2–82% CO2 gas mixtures, the positive-streamer mode is identified as the breakdown mechanism. Breakdown and negative partial discharge inception voltages of 6% C5F10O–12% O2–82% CO2 are higher than those of 4% C4F7N–96% CO2. At 8.8 bar abs, the breakdown voltage of 6% C5F10O–12% O2–82% CO2 is equal to that of 12.77% O2–87.23% CO2 (buffer gas). Synergism in negative partial discharge inception voltage/electric field fits with the mean value and the sum of each partial pressure individually component for a 20% C4F7N–80% CO2 and 6% C5F10O–12% O2–82% CO2, respectively. In 9% C4F7N–91% CO2, the comparison of partial discharge inception electric fields is Emax (CO2) = Emax(C4F7N), and Emax (12.77% O2–87.23% CO2) = Emax(C5F10O) in 19% C5F10O–81%(12.77% O2–87.23% CO2). Polarity reversal occurs under AC voltage when the breakdown polarity changes from negative to positive cycle. Polarity reversal electric field EPR was quantified. Fitting results show that EPR (CO2) = EPR(9% C4F7N–91% CO2) and EPR(SF6) = EPR (22% C4F7N–78% CO2). EPR (4% C4F7N–96% CO2) = EPR (12.77% O2–87.23% CO2) and EPR (6% C5F10O–12% O2–82% CO2) < EPR (4% C4F7N–96% CO2) < EPR (CO2).


2021 ◽  
Vol 528 ◽  
pp. 167705
Author(s):  
Lan Bo ◽  
Lingwen Kong ◽  
Rongzhi Zhao ◽  
Chenglong Hu ◽  
Lianze Ji ◽  
...  

2021 ◽  
Author(s):  
Leiyang Lv ◽  
Chao-Jun Li

Umpolung (polarity reversal) tactics of aldehydes/ketones have greatly broadened the carbonyl chemistry by enabling transformations with electrophilic reagents and deoxygenative functionalizations. Herein, we reported the first ruthenium-catalyzed β-selective alkylation of...


Geophysics ◽  
2017 ◽  
Vol 82 (2) ◽  
pp. S111-S127 ◽  
Author(s):  
Qizhen Du ◽  
ChengFeng Guo ◽  
Qiang Zhao ◽  
Xufei Gong ◽  
Chengxiang Wang ◽  
...  

The scalar images (PP, PS, SP, and SS) of elastic reverse time migration (ERTM) can be generated by applying an imaging condition as crosscorrelation of pure wave modes. In conventional ERTM, Helmholtz decomposition is commonly applied in wavefield separation, which leads to a polarity reversal problem in converted-wave images because of the opposite polarity distributions of the S-wavefields. Polarity reversal of the converted-wave image will cause destructive interference when stacking over multiple shots. Besides, in the 3D case, the curl calculation generates a vector S-wave, which makes it impossible to produce scalar PS, SP, and SS images with the crosscorrelation imaging condition. We evaluate a vector-based ERTM (VB-ERTM) method to address these problems. In VB-ERTM, an amplitude-preserved wavefield separation method based on decoupled elastic wave equation is exploited to obtain the pure wave modes. The output separated wavefields are both vectorial. To obtain the scalar images, the scalar imaging condition in which the scalar product of two vector wavefields with source-normalized illumination is exploited to produce scalar images instead of correlating Cartesian components or magnitude of the vector P- and S-wave modes. Compared with alternative methods for correcting the polarity reversal of PS and SP images, our ERTM solution is more stable and simple. Besides these four scalar images, the VB-ERTM method generates another PP-mode image by using the auxiliary stress wavefields. Several 2D and 3D numerical examples are evaluated to demonstrate the potential of our ERTM method.


Sign in / Sign up

Export Citation Format

Share Document