Interaction of N and O atoms with hardwood and softwood surfaces in the flowing afterglow of N2 -O2 microwave plasmas

2018 ◽  
Vol 15 (7) ◽  
pp. e1800035
Author(s):  
Julien Prégent ◽  
Germain Robert-Bigras ◽  
Luc Stafford
2014 ◽  
Vol 115 (16) ◽  
pp. 163303 ◽  
Author(s):  
J. Afonso Ferreira ◽  
L. Stafford ◽  
R. Leonelli ◽  
A. Ricard

2020 ◽  
Vol 35 (10) ◽  
pp. 2369-2377
Author(s):  
Helmar Wiltsche ◽  
Matthias Wolfgang

The MICAP is a microwave driven plasma source employing nitrogen as the plasma gas. In this work we compare LODs and LOQs obtained in axial viewing with those obtained by ICP-OES and evaluate the effect of air instead of nitrogen as the plasma gas.


1981 ◽  
Vol 59 (11) ◽  
pp. 1615-1621 ◽  
Author(s):  
Scott D. Tanner ◽  
Gervase I. Mackay ◽  
Diethard K. Bohme

Flowing afterglow measurements are reported which provide rate constants and product identifications at 298 ± 2 K for the gas-phase reactions of OH− with CH3OH, C2H5OH, CH3OCH3, CH2O, CH3CHO, CH3COCH3, CH2CO, HCOOH, HCOOCH3, CH2=C=CH2, CH3—C≡CH, and C6H5CH3. The main channels observed were proton transfer and solvation of the OH−. Hydration with one molecule of H2O was observed either to reduce the rate slightly and lead to products which are the hydrated analogues of the "nude" reaction, or to stop the reaction completely, k ≤ 10−12 cm3 molecule−1 s−1. The reaction of OH−•H2O with CH3—C≡CH showed an uncertain intermediate behaviour.


1979 ◽  
Vol 57 (12) ◽  
pp. 1518-1523 ◽  
Author(s):  
Gervase I. Mackay ◽  
Scott D. Tanner ◽  
Alan C. Hopkinson ◽  
Diethard K. Bohme

Rate constants measured with the flowing afterglow technique at 298 ± 2 K are reported for the proton-transfer reactions of H3O+ with CH2O, CH3CHO, (CH3)2CO, HCOOH, CH3COOH, HCOOCH3, CH3OH, C2H5OH, (CH3)2O, and CH2CO. Dissociative proton-transfer was observed only with CH3COOH. The rate constants are compared with the predictions of various theories for ion–molecule collisions. The protonation is discussed in terms of the energetics and mechanisms of various modes of dissociation.


1992 ◽  
Vol 35 (2) ◽  
pp. 181-192 ◽  
Author(s):  
L.J. Matienzo ◽  
F.D. Egitto

1972 ◽  
pp. 363-393 ◽  
Author(s):  
Eldon E. Ferguson
Keyword(s):  

1975 ◽  
Vol 53 (16) ◽  
pp. 2365-2370 ◽  
Author(s):  
Don Betowski ◽  
Gervase Mackay ◽  
John Payzant ◽  
Diethard Bohme

The rate constants and equilibrium constant for the proton transfer reaction [Formula: see text] have been measured at 296 ± 2 K using the flowing afterglow technique: kforward = (2.9 ± 0.6) × 10−9 cm3molecule−1s−1, kreverse = (1.8 ± 0.4) × 10−10 cm3 molecule1 s−1, and K = 16 ± 2. The measured value of K corresponds to a standard free energy change, ΔG296°, of −1.6 ± 0.1 kcal mol−1 which provides values for the standard enthalpy change, ΔH298°= −1.0 ± 0.2 kcal mol−1, the bond dissociation energy, D00(H—CN) = 124 ± 2 kcal mol−1, and the proton affinity, p.a.(CN−) = 350 ± 1 kcal mol−1.


Sign in / Sign up

Export Citation Format

Share Document