A Nanoplasmonic-Fluorescent Ruler for Detection of Site-Specific Protein Binding to Composite DNA of Multiple Sites

2014 ◽  
Vol 31 (12) ◽  
pp. 1281-1290 ◽  
Author(s):  
Steven Lukman ◽  
Laura Sutarlie ◽  
Ning Li ◽  
Xiaodi Su
1971 ◽  
Vol 68 (1_Suppl) ◽  
pp. S223-S246 ◽  
Author(s):  
C. R. Wira ◽  
H. Rochefort ◽  
E. E. Baulieu

ABSTRACT The definition of a RECEPTOR* in terms of a receptive site, an executive site and a coupling mechanism, is followed by a general consideration of four binding criteria, which include hormone specificity, tissue specificity, high affinity and saturation, essential for distinguishing between specific and nonspecific binding. Experimental approaches are proposed for choosing an experimental system (either organized or soluble) and detecting the presence of protein binding sites. Techniques are then presented for evaluating the specific protein binding sites (receptors) in terms of the four criteria. This is followed by a brief consideration of how receptors may be located in cells and characterized when extracted. Finally various examples of oestrogen, androgen, progestagen, glucocorticoid and mineralocorticoid binding to their respective target tissues are presented, to illustrate how researchers have identified specific corticoid and mineralocorticoid binding in their respective target tissue receptors.


2018 ◽  
Author(s):  
Daniel D. Brauer ◽  
Emily C. Hartman ◽  
Daniel L.V. Bader ◽  
Zoe N. Merz ◽  
Danielle Tullman-Ercek ◽  
...  

<div> <p>Site-specific protein modification is a widely-used strategy to attach drugs, imaging agents, or other useful small molecules to protein carriers. N-terminal modification is particularly useful as a high-yielding, site-selective modification strategy that can be compatible with a wide array of proteins. However, this modification strategy is incompatible with proteins with buried or sterically-hindered N termini, such as virus-like particles like the well-studied MS2 bacteriophage coat protein. To assess VLPs with improved compatibility with these techniques, we generated a targeted library based on the MS2-derived protein cage with N-terminal proline residues followed by three variable positions. We subjected the library to assembly, heat, and chemical selections, and we identified variants that were modified in high yield with no reduction in thermostability. Positive charge adjacent to the native N terminus is surprisingly beneficial for successful extension, and over 50% of the highest performing variants contained positive charge at this position. Taken together, these studies described nonintuitive design rules governing N-terminal extensions and identified successful extensions with high modification potential.</p> </div>


2016 ◽  
Vol 14 (21) ◽  
pp. 4817-4823 ◽  
Author(s):  
Roman Meledin ◽  
Sachitanand M. Mali ◽  
Sumeet K. Singh ◽  
Ashraf Brik

We report a strategy for site-specific protein ubiquitination using dehydroalanine (Dha) chemistry for the preparation of ubiquitin conjugates bearing a very close mimic of the native isopeptide bond.


2016 ◽  
Vol 12 (6) ◽  
pp. 1731-1745 ◽  
Author(s):  
Jonathan Lotze ◽  
Ulrike Reinhardt ◽  
Oliver Seitz ◽  
Annette G. Beck-Sickinger

Peptide-tag based labelling can be achieved by (i) enzymes (ii) recognition of metal ions or small molecules and (iii) peptide–peptide interactions and enables site-specific protein visualization to investigate protein localization and trafficking.


Sign in / Sign up

Export Citation Format

Share Document