scholarly journals Mapping antibody binding sites on cytochrome c with synthetic peptides: Are results representative of the antigenic structure of proteins?

1993 ◽  
Vol 2 (2) ◽  
pp. 175-182 ◽  
Author(s):  
Christian Schwab ◽  
Andrea Twardek ◽  
Hans Rudolf Bosshard ◽  
Terence P. Lo ◽  
Gary D. Brayer
2004 ◽  
Vol 279 (44) ◽  
pp. 46350
Author(s):  
Jean Alric ◽  
Makoto Yoshida ◽  
Kenji V.P. Nagashima ◽  
Rainer Hienerwadel ◽  
Pierre Parot ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (2) ◽  
pp. e0115582 ◽  
Author(s):  
Silvia Ratto-Kim ◽  
Mark S. de Souza ◽  
Jeffrey R. Currier ◽  
Nicos Karasavvas ◽  
John Sidney ◽  
...  

Microbiology ◽  
1987 ◽  
Vol 133 (4) ◽  
pp. 825-833 ◽  
Author(s):  
I. J. Nicolson ◽  
A. C. F. Perry ◽  
M. Virji ◽  
J. E. Heckels ◽  
J. R. Saunders

1992 ◽  
Vol 12 (6) ◽  
pp. 2872-2883
Author(s):  
J H de Winde ◽  
L A Grivell

The multifunctional DNA-binding proteins ABF1 and CPF1 bind in a mutually exclusive manner to the promoter region of the QCR8 gene, which encodes 11-kDa subunit VIII of the Saccharomyces cerevisiae mitochondrial ubiquinol-cytochrome c oxidoreductase (QCR). We investigated the roles that the two factors play in transcriptional regulation of this gene. To this end, the overlapping binding sites for ABF1 and CPF1 were mutated and placed in the chromosomal context of the QCR8 promoter. The effects on transcription of the QCR8 gene were analyzed both under steady-state conditions and during nutritional shifts. We found that ABF1 is required for repressed and derepressed transcription levels and for efficient induction of transcription upon escape from catabolite repression, independently of DNA replication. CPF1 acts as a negative regulator, modulating the overall induction response. Alleviation of repression through CPF1 requires passage through the S phase. Implications of these findings for the roles played by ABF1 and CPF1 in global regulation of mitochondrial biogenesis are discussed.


2020 ◽  
Author(s):  
Alessio Bartocci ◽  
florence szczepaniak ◽  
Tao Jiang ◽  
Natacha Gillet ◽  
Elise Dumont

Here, we propose a molecular dynamics investigation of the supramolecular association of sulfonatedcalix-[8]-arenes to cytochrome c. The binding sites prone to interactions with sulfonated calixarenescan be identified without prior knowledge of the X-ray structure, and the binding free energiesestimated by molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) post-analysis arefound to be in neat agreement with the isothermal titration calorimetry (ITC) measurements The per-residuedecomposition reveals the detailed picture of this electrostatically-driven association and notably therole of the arginine R13 as a bridge residue between the two main anchoring sites. In addition,the analysis of the residue behavior by means of a supervised machine learning protocol unveils the formation of an hydrogen bond network far from the binding sites, increasing the rigidity of theprotein.


Sign in / Sign up

Export Citation Format

Share Document