New Light on the T-Cell Receptor in Relation to Antibody Binding Sites

Author(s):  
E. S. Golub
1990 ◽  
Vol 10 (10) ◽  
pp. 5486-5495
Author(s):  
L R Gottschalk ◽  
J M Leiden

A transcriptional enhancer has been mapped to a region 5.5 kilobases 3' of the C beta 2 gene in the human T-cell receptor (TCR) beta-chain locus. Transient transfections allowed localization of enhancer activity to a 480-base-pair HincII-XbaI restriction enzyme fragment. The TCR beta enhancer was active on both the minimal simian virus 40 promoter and a TCR beta variable gene promoter in both TCR alpha/beta + and TCR gamma/delta + T cells. It displayed significantly less activity in Epstein-Barr virus-transformed B cells and K562 chronic myelogenous leukemia cells and no activity in HeLa fibroblasts. DNA sequence analysis revealed that the enhancer contains a consensus immunoglobulin kappa E2 motif, as well as an AP-1-binding site and a cyclic AMP response element. DNase I footprint analyses using Jurkat T-cell nuclear extracts allowed the identification of five nuclear protein-binding sites, T beta 1 to T beta 5, within the enhancer element. Deletion and in vitro mutagenesis studies demonstrated that the T beta 2- and T beta 3- and T beta 4-binding sites are each required for full transcriptional enhancer activity. In contrast, deletion of the T beta 1- and T beta 5-binding sites had essentially no effect on enhancer function. Electrophoretic mobility shift assays demonstrated that TCR alpha/beta + and TCR gamma/delta + T cells expressed T beta 2-, T beta 3-, and T beta 4-binding activities. In contrast, non-T-cell lines, in which the enhancer was inactive, each lacked expression of at least one of these binding activities. TCR alpha and beta gene expression may be regulated by a common set of T-cell nuclear proteins in that the T beta 2 element binding a set of cyclic AMP response element-binding proteins that are also bound by the T alpha 1 element of the human TCR alpha enhancer and the decamer element present in a large number of human and murine TCR beta promoters. Similarly, the T beta 5 TCR beta-enhancer element and the T alpha 2 TCR alpha-enhancer element bind at least one common T-cell nuclear protein. Taken together, these results suggest that TCR beta gene expression is regulated by the interaction of multiple T cell nuclear proteins with a transcriptional enhancer element located 3' of the C beta 2 gene and that some of these proteins may be involved in the coordinate regulation of TCR alpha and beta gene expression.


1995 ◽  
Vol 181 (6) ◽  
pp. 2229-2235 ◽  
Author(s):  
J M Hurley ◽  
R Shimonkevitz ◽  
A Hanagan ◽  
K Enney ◽  
E Boen ◽  
...  

Superantigens, in association with class II major histocompatibility complex (MHC) molecules, activate T cells bearing particular beta chain variable domains of the T cell receptor (TCR). Unlike conventional peptide antigens, superantigens bind as intact proteins to TCR and MHC molecules outside their peptide binding sites. To characterize these interactions at the molecular level, random point mutations were generated in the gene encoding toxic shock syndrome toxin 1, a bacterial superantigen associated with toxic shock syndrome. Functionally impaired mutants were identified based on their lack of murine and human T cell stimulatory activities, and experiments analyzing binding to human histocompatibility leukocyte antigen-DR molecules differentiated residues involved in MHC from TCR binding. The results showed that the great majority of mutations are clustered in two distinct regions of the toxic shock syndrome toxin 1 molecule. The class II MHC binding site is located in the hydrophobic region of the NH2-terminal domain, and the TCR binding site is primarily in the major central groove of the COOH-terminal domain. These studies provide insight into the interactions necessary for superantigen-mediated disease in humans.


2010 ◽  
Vol 47 (15) ◽  
pp. 2450-2457 ◽  
Author(s):  
Lasse Boding ◽  
Martin Weiss Nielsen ◽  
Charlotte Menné Bonefeld ◽  
Marina Rode von Essen ◽  
Bodil Lisbeth Nielsen ◽  
...  

Biochemistry ◽  
2017 ◽  
Vol 56 (30) ◽  
pp. 3945-3961 ◽  
Author(s):  
Patrick S. Merkle ◽  
Melita Irving ◽  
Song Hongjian ◽  
Mathias Ferber ◽  
Thomas J. D. Jørgensen ◽  
...  

2018 ◽  
Vol 293 (41) ◽  
pp. 15991-16005 ◽  
Author(s):  
Sneha Rangarajan ◽  
Yanan He ◽  
Yihong Chen ◽  
Melissa C. Kerzic ◽  
Buyong Ma ◽  
...  

T cells generate adaptive immune responses mediated by the T cell receptor (TCR)–CD3 complex comprising an αβ TCR heterodimer noncovalently associated with three CD3 dimers. In early T cell activation, αβ TCR engagement by peptide–major histocompatibility complex (pMHC) is first communicated to the CD3 signaling apparatus of the TCR–CD3 complex, but the underlying mechanism is incompletely understood. It is possible that pMHC binding induces allosteric changes in TCR conformation or dynamics that are then relayed to CD3. Here, we carried out NMR analysis and molecular dynamics (MD) simulations of both the α and β chains of a human antiviral TCR (A6) that recognizes the Tax antigen from human T cell lymphotropic virus-1 bound to the MHC class I molecule HLA-A2. We observed pMHC-induced NMR signal perturbations in the TCR variable (V) domains that propagated to three distinct sites in the constant (C) domains: 1) the Cβ FG loop projecting from the Vβ/Cβ interface; 2) a cluster of Cβ residues near the Cβ αA helix, a region involved in interactions with CD3; and 3) the Cα AB loop at the membrane-proximal base of the TCR. A biological role for each of these allosteric sites is supported by previous mutational and functional studies of TCR signaling. Moreover, the pattern of long-range, ligand-induced changes in TCR A6 revealed by NMR was broadly similar to that predicted by the MD simulations. We propose that the unique structure of the TCR β chain enables allosteric communication between the TCR-binding sites for pMHC and CD3.


1997 ◽  
Vol 17 (8) ◽  
pp. 4220-4229 ◽  
Author(s):  
J P Halle ◽  
P Haus-Seuffert ◽  
C Woltering ◽  
G Stelzer ◽  
M Meisterernst

The T-cell receptor (TCR) beta-chain promoters have been characterized as nonstructured basal promoters that carry a single conserved ubiquitous cyclic AMP-responsive element. Our investigation of the human TCR beta gene uncovers a surprisingly complex and tissue-specific structure at the TCR Vbeta 8.1 promoter. The core of the promoter (positions -42 to +11) is recognized by the lymphoid cell-specific transcription factors Ets-1, LEF1, and AML1 as well as by CREB/ATF-1, as is demonstrated in gel shift and footprinting experiments. With the exception of LEF1, these factors activate transcription in T cells. Binding sites at the core region show little conservation with consensus sites. Nonetheless, CREB, Ets-1, and AML1 bind and activate cooperatively and very efficiently through the nonconsensus binding sites at the core promoter region. Moderate ubiquitous activation is further induced by CREB/ATF and Sp1 factors through proximal upstream elements. The tissue-specific core promoter structure is apparently conserved in other T-cell-specifically expressed genes such as the CD4 gene. Our observations suggest that both the enhancer and the promoter have a complex tissue-specific structure whose functional interplay potentiates T-cell-specific transcription.


1990 ◽  
Vol 10 (10) ◽  
pp. 5486-5495 ◽  
Author(s):  
L R Gottschalk ◽  
J M Leiden

A transcriptional enhancer has been mapped to a region 5.5 kilobases 3' of the C beta 2 gene in the human T-cell receptor (TCR) beta-chain locus. Transient transfections allowed localization of enhancer activity to a 480-base-pair HincII-XbaI restriction enzyme fragment. The TCR beta enhancer was active on both the minimal simian virus 40 promoter and a TCR beta variable gene promoter in both TCR alpha/beta + and TCR gamma/delta + T cells. It displayed significantly less activity in Epstein-Barr virus-transformed B cells and K562 chronic myelogenous leukemia cells and no activity in HeLa fibroblasts. DNA sequence analysis revealed that the enhancer contains a consensus immunoglobulin kappa E2 motif, as well as an AP-1-binding site and a cyclic AMP response element. DNase I footprint analyses using Jurkat T-cell nuclear extracts allowed the identification of five nuclear protein-binding sites, T beta 1 to T beta 5, within the enhancer element. Deletion and in vitro mutagenesis studies demonstrated that the T beta 2- and T beta 3- and T beta 4-binding sites are each required for full transcriptional enhancer activity. In contrast, deletion of the T beta 1- and T beta 5-binding sites had essentially no effect on enhancer function. Electrophoretic mobility shift assays demonstrated that TCR alpha/beta + and TCR gamma/delta + T cells expressed T beta 2-, T beta 3-, and T beta 4-binding activities. In contrast, non-T-cell lines, in which the enhancer was inactive, each lacked expression of at least one of these binding activities. TCR alpha and beta gene expression may be regulated by a common set of T-cell nuclear proteins in that the T beta 2 element binding a set of cyclic AMP response element-binding proteins that are also bound by the T alpha 1 element of the human TCR alpha enhancer and the decamer element present in a large number of human and murine TCR beta promoters. Similarly, the T beta 5 TCR beta-enhancer element and the T alpha 2 TCR alpha-enhancer element bind at least one common T-cell nuclear protein. Taken together, these results suggest that TCR beta gene expression is regulated by the interaction of multiple T cell nuclear proteins with a transcriptional enhancer element located 3' of the C beta 2 gene and that some of these proteins may be involved in the coordinate regulation of TCR alpha and beta gene expression.


Sign in / Sign up

Export Citation Format

Share Document