scholarly journals Sequence relationships between integral inner membrane proteins of binding protein-dependent transport systems: Evolution by recurrent gene duplications

1994 ◽  
Vol 3 (2) ◽  
pp. 325-344 ◽  
Author(s):  
W. Saurin ◽  
E. Dassa
2002 ◽  
Vol 184 (11) ◽  
pp. 2978-2986 ◽  
Author(s):  
John Beck Jensen ◽  
N. Kent Peters ◽  
T. V. Bhuvaneswari

ABSTRACT We have identified a cluster of six genes involved in trehalose transport and utilization (thu) in Sinorhizobium meliloti. Four of these genes, thuE, -F, -G, and -K, were found to encode components of a binding protein-dependent trehalose/maltose/sucrose ABC transporter. Their deduced gene products comprise a trehalose/maltose-binding protein (ThuE), two integral membrane proteins (ThuF and ThuG), and an ATP-binding protein (ThuK). In addition, a putative regulatory protein (ThuR) was found divergently transcribed from the thuEFGK operon. When the thuE locus was inactivated by gene replacement, the resulting S. meliloti strain was impaired in its ability to grow on trehalose, and a significant retardation in growth was seen on maltose as well. The wild type and the thuE mutant were indistinguishable for growth on glucose and sucrose. This suggested a possible overlap in function of the thuEFGK operon with the aglEFGAK operon, which was identified as a binding protein-dependent ATP-binding transport system for sucrose, maltose, and trehalose. The Km s for trehalose transport were 8 ± 1 nM and 55 ± 5 nM in the uninduced and induced cultures, respectively. Transport and growth experiments using mutants impaired in either or both of these transport systems show that these systems form the major transport systems for trehalose, maltose, and sucrose. By using a thuE′-lacZ fusion, we show that thuE is induced only by trehalose and not by cellobiose, glucose, maltopentaose, maltose, mannitol, or sucrose, suggesting that the thuEFGK system is primarily targeted toward trehalose. The aglEFGAK operon, on the other hand, is induced primarily by sucrose and to a lesser extent by trehalose. Tests for root colonization, nodulation, and nitrogen fixation suggest that uptake of disaccharides can be critical for colonization of alfalfa roots but is not important for nodulation and nitrogen fixation per se.


Periplasmic binding protein-dependent transport systems are multicomponent, consisting of several inner membrane-associated proteins and a periplasmic component. The membrane-associated components of different systems are related in organization and function suggesting that, despite different substrate specificities, each transport system functions by a common mechanism. Current understanding of these components is reviewed. The nature of energy coupling to periplasmic transport systems has long been debated. Recent data now demonstrate that ATP hydrolysis is the primary source of energy for transport. The ATP-binding transport components are the best characterized of a family of closely related ATP-binding proteins believed to couple ATP hydrolysis to a variety of different biological processes. Intriguingly, systems closely related to periplasmic binding protein-dependent transport systems have recently been identified in several Gram-positive organisms (which lack a periplasm) and in eukaryotic cells. This class of transport system appears to be widespread in nature, serving a variety of important and diverse functions.


1990 ◽  
Vol 22 (4) ◽  
pp. 571-592 ◽  
Author(s):  
C. F. Higgins ◽  
S. C. Hyde ◽  
M. M. Mimmack ◽  
U. Gileadi ◽  
D. R. Gill ◽  
...  

1995 ◽  
Vol 4 (7) ◽  
pp. 1346-1355 ◽  
Author(s):  
Brian H. Shilton ◽  
Sherry L. Mowbray

Sign in / Sign up

Export Citation Format

Share Document