A novel shape complementarity scoring function for protein-protein docking

2003 ◽  
Vol 51 (3) ◽  
pp. 397-408 ◽  
Author(s):  
Rong Chen ◽  
Zhiping Weng
2019 ◽  
Vol 20 (S25) ◽  
Author(s):  
Yumeng Yan ◽  
Sheng-You Huang

Abstract Background Protein-protein docking is a valuable computational approach for investigating protein-protein interactions. Shape complementarity is the most basic component of a scoring function and plays an important role in protein-protein docking. Despite significant progresses, shape representation remains an open question in the development of protein-protein docking algorithms, especially for grid-based docking approaches. Results We have proposed a new pairwise shape-based scoring function (LSC) for protein-protein docking which adopts an exponential form to take into account long-range interactions between protein atoms. The LSC scoring function was incorporated into our FFT-based docking program and evaluated for both bound and unbound docking on the protein docking benchmark 4.0. It was shown that our LSC achieved a significantly better performance than four other similar docking methods, ZDOCK 2.1, MolFit/G, GRAMM, and FTDock/G, in both success rate and number of hits. When considering the top 10 predictions, LSC obtained a success rate of 51.71% and 6.82% for bound and unbound docking, respectively, compared to 42.61% and 4.55% for the second-best program ZDOCK 2.1. LSC also yielded an average of 8.38 and 3.94 hits per complex in the top 1000 predictions for bound and unbound docking, respectively, followed by 6.38 and 2.96 hits for the second-best ZDOCK 2.1. Conclusions The present LSC method will not only provide an initial-stage docking approach for post-docking processes but also have a general implementation for accurate representation of other energy terms on grids in protein-protein docking. The software has been implemented in our HDOCK web server at http://hdock.phys.hust.edu.cn/.


2017 ◽  
Vol 5 (2) ◽  
pp. 180-190
Author(s):  
Hari K. Voruganti ◽  
Bhaskar Dasgupta

Abstract The problem of molecular docking is to predict whether two given molecules bind together to interact. A shape-based algorithm is proposed for predictive docking by noting that shape complementarity between their outer surfaces is necessary for two molecules to bind. A methodology with five stages has been developed to find the pose in which the shape complementarity is maximum. It involves surface generation, segmentation, parameterization, shape matching, and filtering and scoring. The most significant contribution of this paper is the novel scoring function called ‘Normalized Volume Mismatch’ which evaluates the matching between a pair of surface patches efficiently by measuring the gap or solid volume entrapped between two patches of a pair of proteins when they are placed one against the other at a contact point. After the evaluation, it is found that, with local shape complementarity as the only criterion, the algorithm is able to predict a conformation close to the exact one, in case of known docking conformations, and also rank the same among the top 40 solutions. This is remarkable considering the fact that many existing docking methods fail to rank a near-native conformation among top 50 solutions. The shape-based approaches are used for the initial stage of docking to identify a small set of candidate solutions to be investigated further with exhaustive energy studies etc. The ability of capturing the correct conformation as highly ranked among top few candidate solutions is the most valuable facet of this new predictive docking algorithm. Highlights A new rigid-body docking algorithm is proposed for protein–protein docking. An approach using techniques of cad/cam for a problem in biology is presented. Unlike many existing ones, a volume based scoring criterion is proposed. The new criteria can capture even multiple possible docking conformation. Entire automatic docking procedures is based on shape complementarity only.


2021 ◽  
Author(s):  
Sharon Sunny ◽  
Jayaraj PB

ResDock is a new method to improve the performance of protein-protein complex structure prediction. It utilizes shape complementarity of the protein surfaces to generate the conformation space. The use of an appropriate scoring function helps to select the feasible structures. An interplay between pose generation phase and scoring phase enhance the performance of the proposed ab initio technique. <br>


2021 ◽  
Author(s):  
Sharon Sunny ◽  
Jayaraj PB

ResDock is a new method to improve the performance of protein-protein complex structure prediction. It utilizes shape complementarity of the protein surfaces to generate the conformation space. The use of an appropriate scoring function helps to select the feasible structures. An interplay between pose generation phase and scoring phase enhance the performance of the proposed ab initio technique. <br>


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Andrew T. McNutt ◽  
Paul Francoeur ◽  
Rishal Aggarwal ◽  
Tomohide Masuda ◽  
Rocco Meli ◽  
...  

AbstractMolecular docking computationally predicts the conformation of a small molecule when binding to a receptor. Scoring functions are a vital piece of any molecular docking pipeline as they determine the fitness of sampled poses. Here we describe and evaluate the 1.0 release of the Gnina docking software, which utilizes an ensemble of convolutional neural networks (CNNs) as a scoring function. We also explore an array of parameter values for Gnina 1.0 to optimize docking performance and computational cost. Docking performance, as evaluated by the percentage of targets where the top pose is better than 2Å root mean square deviation (Top1), is compared to AutoDock Vina scoring when utilizing explicitly defined binding pockets or whole protein docking. Gnina, utilizing a CNN scoring function to rescore the output poses, outperforms AutoDock Vina scoring on redocking and cross-docking tasks when the binding pocket is defined (Top1 increases from 58% to 73% and from 27% to 37%, respectively) and when the whole protein defines the binding pocket (Top1 increases from 31% to 38% and from 12% to 16%, respectively). The derived ensemble of CNNs generalizes to unseen proteins and ligands and produces scores that correlate well with the root mean square deviation to the known binding pose. We provide the 1.0 version of Gnina under an open source license for use as a molecular docking tool at https://github.com/gnina/gnina.


2019 ◽  
Author(s):  
Georgy Derevyanko ◽  
Guillaume Lamoureux

AbstractProtein-protein interactions are determined by a number of hard-to-capture features related to shape complementarity, electrostatics, and hydrophobicity. These features may be intrinsic to the protein or induced by the presence of a partner. A conventional approach to protein-protein docking consists in engineering a small number of spatial features for each protein, and in minimizing the sum of their correlations with respect to the spatial arrangement of the two proteins. To generalize this approach, we introduce a deep neural network architecture that transforms the raw atomic densities of each protein into complex three-dimensional representations. Each point in the volume containing the protein is described by 48 learned features, which are correlated and combined with the features of a second protein to produce a score dependent on the relative position and orientation of the two proteins. The architecture is based on multiple layers of SE(3)-equivariant convolutional neural networks, which provide built-in rotational and translational invariance of the score with respect to the structure of the complex. The model is trained end-to-end on a set of decoy conformations generated from 851 nonredundant protein-protein complexes and is tested on data from the Protein-Protein Docking Benchmark Version 4.0.


2016 ◽  
Vol 14 (03) ◽  
pp. 1642002 ◽  
Author(s):  
Bahar Akbal-Delibas ◽  
Roshanak Farhoodi ◽  
Marc Pomplun ◽  
Nurit Haspel

One of the major challenges for protein docking methods is to accurately discriminate native-like structures from false positives. Docking methods are often inaccurate and the results have to be refined and re-ranked to obtain native-like complexes and remove outliers. In a previous work, we introduced AccuRefiner, a machine learning based tool for refining protein–protein complexes. Given a docked complex, the refinement tool produces a small set of refined versions of the input complex, with lower root-mean-square-deviation (RMSD) of atomic positions with respect to the native structure. The method employs a unique ranking tool that accurately predicts the RMSD of docked complexes with respect to the native structure. In this work, we use a deep learning network with a similar set of features and five layers. We show that a properly trained deep learning network can accurately predict the RMSD of a docked complex with 1.40 Å error margin on average, by approximating the complex relationship between a wide set of scoring function terms and the RMSD of a docked structure. The network was trained on 35000 unbound docking complexes generated by RosettaDock. We tested our method on 25 different putative docked complexes produced also by RosettaDock for five proteins that were not included in the training data. The results demonstrate that the high accuracy of the ranking tool enables AccuRefiner to consistently choose the refinement candidates with lower RMSD values compared to the coarsely docked input structures.


Author(s):  
Apostolos Axenopoulos ◽  
Petros Daras ◽  
Georgios Papadopoulos ◽  
Elias Houstis

Author(s):  
O. Kohlbacher ◽  
A. Burchardt ◽  
A. Moll ◽  
A. Hildebrandt ◽  
P. Bayer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document