Large-scale prediction of protein geometry and stability changes for arbitrary single point mutations

2004 ◽  
Vol 57 (2) ◽  
pp. 400-413 ◽  
Author(s):  
A. J. Bordner ◽  
R. A. Abagyan
2021 ◽  
Vol 154 (9) ◽  
Author(s):  
Kavita A. Iyer ◽  
Yifan Hu ◽  
Thomas Klose ◽  
Takashi Murayama ◽  
Montserrat Samsó

Single-point mutations in ryanodine receptors (RYRs), large intracellular Ca2+ channels that play a critical role in EC coupling, are linked to debilitating and lethal disorders such as central core disease, malignant hyperthermia (for the skeletal isoform, RYR1), catecholaminergic polymorphic ventricular tachycardia, and ARVD2 (for the cardiac isoform, RYR2). Mutant RYRs result in elevated [Ca2+]cyto due to steady leak from the sarcoplasmic reticulum. To explore the nature of long-range allosteric mechanisms of malfunction, we determined the structure of two N-terminal domain mutants of RYR1, situated far away from the pore. Cryo-electron microscopy of the N-terminal subdomain A (NTDA) and subdomain C (NTDC) full-length mutants, RYR1 R163C (determined to 3.5 Å resolution), and RYR1 Y522S (determined to 4.0 Å resolution), respectively, reveal large-scale conformational changes in the cytoplasmic assembly under closed-state conditions (i.e., absence of activating Ca2+). The multidomain changes suggest that the mutations induce a preactivated state of the channel in R164C by altering the NTDA+/CD interface, and in Y522S by rearrangement of the α-helical bundle in NTDC. However, the extent of preactivation is considerably higher in Y522S as compared with R163C, which agrees with the increased severity of the Y522S mutation as established by various functional studies. The Y522S mutation represents loss of a spacer residue that is crucial for maintaining optimal orientation of α helices in NTDC, alteration of which has long-range effects felt as far away as ∼100 Å. Additionally, the structure of the Y522S mutant channel under open-state conditions also differs from RYR1 WT open channels. Our developing work with RYR mutants exhibits the diverse mechanisms by which these single-point mutations exert an effect on the channel’s function and highlight the complexity of the multidomain channel, as well as the need for targeted therapies.


2019 ◽  
Author(s):  
Nobutaka Fujieda ◽  
Miho Yuasa ◽  
Yosuke Nishikawa ◽  
Genji Kurisu ◽  
Shinobu Itoh ◽  
...  

Cupin superfamily proteins (TM1459) work as a macromolecular ligand framework with a double-stranded beta-barrel structure ligating to a Cu ion through histidine side chains. Variegating the first coordination sphere of TM1459 revealed that H52A and H54A/H58A mutants effectively catalyzed the diastereo- and enantio-selective Michael addition reaction of nitroalkanes to an α,β-unsaturated ketone. Moreover, in silico substrate docking signified C106N and F104W single-point mutations, which inverted the diastereoselectivity of H52A and further improved the stereoselectivity of H54A/H58A, respectively.


2021 ◽  
Author(s):  
Marisa L. Martino ◽  
Stephen N. Crooke ◽  
Marianne Manchester ◽  
M.G. Finn

2017 ◽  
Vol 474 (18) ◽  
pp. 3189-3205 ◽  
Author(s):  
Ashoka Chary Taviti ◽  
Tushar Kant Beuria

Cell division in bacteria is a highly controlled and regulated process. FtsZ, a bacterial cytoskeletal protein, forms a ring-like structure known as the Z-ring and recruits more than a dozen other cell division proteins. The Min system oscillates between the poles and inhibits the Z-ring formation at the poles by perturbing FtsZ assembly. This leads to an increase in the FtsZ concentration at the mid-cell and helps in Z-ring positioning. MinC, the effector protein, interferes with Z-ring formation through two different mechanisms mediated by its two domains with the help of MinD. However, the mechanism by which MinD triggers MinC activity is not yet known. We showed that MinD directly interacts with FtsZ with an affinity stronger than the reported MinC–FtsZ interaction. We determined the MinD-binding site of FtsZ using computational, mutational and biochemical analyses. Our study showed that MinD binds to the H10 helix of FtsZ. Single-point mutations at the charged residues in the H10 helix resulted in a decrease in the FtsZ affinity towards MinD. Based on our findings, we propose a novel model for MinCD–FtsZ interaction, where MinD through its direct interaction with FtsZ would trigger MinC activity to inhibit FtsZ functions.


2006 ◽  
Vol 340 (3) ◽  
pp. 792-799 ◽  
Author(s):  
Motofumi Tanaka ◽  
Motoko Nagano-Fujii ◽  
Lin Deng ◽  
Satoshi Ishido ◽  
Kiyonao Sada ◽  
...  

2007 ◽  
Vol 67 (4 suppl) ◽  
pp. 813-818 ◽  
Author(s):  
CS. Trinca ◽  
HF. Waldemarin ◽  
E. Eizirik

The Neotropical otter is one of the least known otter species, and it is considered to be threatened to various degrees throughout its geographic range. Little information exists on the ecological characteristics of this species, and no genetic study has been published about it until now, hampering the design of adequate conservation strategies for its populations. To contribute with genetic information to comprehensive conservation efforts on behalf of L. longicaudis, we characterized the molecular diversity of the 5’ portion of the mtDNA control region in samples from this species collected in Southern and Southeastern Brazil. The sequence analysis revealed a high level of haplotype diversity (h = 0.819; SE = 0.0052) and nucleotide variability ranging from 0.0039 to 0.0067. One of the sampled haplotypes was the most common in both regions and, from this sequence, several other (locally occurring) haplotypes could be derived by single point mutations. No significant genetic differentiation was observed between the Southern and Southeastern regions.


Sign in / Sign up

Export Citation Format

Share Document