scholarly journals Cryo-EM reveals local and global structural rearrangements in RYR mutants

2021 ◽  
Vol 154 (9) ◽  
Author(s):  
Kavita A. Iyer ◽  
Yifan Hu ◽  
Thomas Klose ◽  
Takashi Murayama ◽  
Montserrat Samsó

Single-point mutations in ryanodine receptors (RYRs), large intracellular Ca2+ channels that play a critical role in EC coupling, are linked to debilitating and lethal disorders such as central core disease, malignant hyperthermia (for the skeletal isoform, RYR1), catecholaminergic polymorphic ventricular tachycardia, and ARVD2 (for the cardiac isoform, RYR2). Mutant RYRs result in elevated [Ca2+]cyto due to steady leak from the sarcoplasmic reticulum. To explore the nature of long-range allosteric mechanisms of malfunction, we determined the structure of two N-terminal domain mutants of RYR1, situated far away from the pore. Cryo-electron microscopy of the N-terminal subdomain A (NTDA) and subdomain C (NTDC) full-length mutants, RYR1 R163C (determined to 3.5 Å resolution), and RYR1 Y522S (determined to 4.0 Å resolution), respectively, reveal large-scale conformational changes in the cytoplasmic assembly under closed-state conditions (i.e., absence of activating Ca2+). The multidomain changes suggest that the mutations induce a preactivated state of the channel in R164C by altering the NTDA+/CD interface, and in Y522S by rearrangement of the α-helical bundle in NTDC. However, the extent of preactivation is considerably higher in Y522S as compared with R163C, which agrees with the increased severity of the Y522S mutation as established by various functional studies. The Y522S mutation represents loss of a spacer residue that is crucial for maintaining optimal orientation of α helices in NTDC, alteration of which has long-range effects felt as far away as ∼100 Å. Additionally, the structure of the Y522S mutant channel under open-state conditions also differs from RYR1 WT open channels. Our developing work with RYR mutants exhibits the diverse mechanisms by which these single-point mutations exert an effect on the channel’s function and highlight the complexity of the multidomain channel, as well as the need for targeted therapies.

2004 ◽  
Vol 116 (43) ◽  
pp. 5904-5909 ◽  
Author(s):  
Julia Wirmer ◽  
Christian Schlörb ◽  
Judith Klein-Seetharaman ◽  
Ryoma Hirano ◽  
Tadashi Ueda ◽  
...  

2020 ◽  
Vol 6 (31) ◽  
pp. eabb2964 ◽  
Author(s):  
Kavita A. Iyer ◽  
Yifan Hu ◽  
Ashok R. Nayak ◽  
Nagomi Kurebayashi ◽  
Takashi Murayama ◽  
...  

Mutations in ryanodine receptors (RyRs), intracellular Ca2+ channels, are associated with deadly disorders. Despite abundant functional studies, the molecular mechanism of RyR malfunction remains elusive. We studied two single-point mutations at an equivalent site in the skeletal (RyR1 R164C) and cardiac (RyR2 R176Q) isoforms using ryanodine binding, Ca2+ imaging, and cryo–electron microscopy (cryo-EM) of the full-length protein. Loss of the positive charge had greater effect on the skeletal isoform, mediated via distortion of a salt bridge network, a molecular latch inducing rotation of a cytoplasmic domain, and partial progression to open-state traits of the large cytoplasmic assembly accompanied by alteration of the Ca2+ binding site, which concur with the major “hyperactive” feature of the mutated channel. Our cryo-EM studies demonstrated the allosteric effect of a mutation situated ~85 Å away from the pore and identified an isoform-specific structural effect.


2004 ◽  
Vol 43 (43) ◽  
pp. 5780-5785 ◽  
Author(s):  
Julia Wirmer ◽  
Christian Schlörb ◽  
Judith Klein-Seetharaman ◽  
Ryoma Hirano ◽  
Tadashi Ueda ◽  
...  

2017 ◽  
Vol 149 (2) ◽  
pp. 199-218 ◽  
Author(s):  
Akira Uehara ◽  
Takashi Murayama ◽  
Midori Yasukochi ◽  
Michael Fill ◽  
Minoru Horie ◽  
...  

Various ryanodine receptor 2 (RyR2) point mutations cause catecholamine-induced polymorphic ventricular tachycardia (CPVT), a life-threatening arrhythmia evoked by diastolic intracellular Ca2+ release dysfunction. These mutations occur in essential regions of RyR2 that regulate Ca2+ release. The molecular dysfunction caused by CPVT-associated RyR2 mutations as well as the functional consequences remain unresolved. Here, we study the most severe CPVT-associated RyR2 mutation (K4750Q) known to date. We define the molecular and cellular dysfunction generated by this mutation and detail how it alters RyR2 function, using Ca2+ imaging, ryanodine binding, and single-channel recordings. HEK293 cells and cardiac HL-1 cells expressing RyR2-K4750Q show greatly enhanced spontaneous Ca2+ oscillations. An endoplasmic reticulum–targeted Ca2+ sensor, R-CEPIA1er, revealed that RyR2-K4750Q mediates excessive diastolic Ca2+ leak, which dramatically reduces luminal [Ca2+]. We further show that the K4750Q mutation causes three RyR2 defects: hypersensitization to activation by cytosolic Ca2+, loss of cytosolic Ca2+/Mg2+-mediated inactivation, and hypersensitization to luminal Ca2+ activation. These defects combine to kinetically stabilize RyR2-K4750Q openings, thus explaining the extensive diastolic Ca2+ leak from the sarcoplasmic reticulum, frequent Ca2+ waves, and severe CPVT phenotype. As the multiple concurrent defects are induced by a single point mutation, the K4750 residue likely resides at a critical structural point at which cytosolic and luminal RyR2 control input converge.


2019 ◽  
Author(s):  
Nobutaka Fujieda ◽  
Miho Yuasa ◽  
Yosuke Nishikawa ◽  
Genji Kurisu ◽  
Shinobu Itoh ◽  
...  

Cupin superfamily proteins (TM1459) work as a macromolecular ligand framework with a double-stranded beta-barrel structure ligating to a Cu ion through histidine side chains. Variegating the first coordination sphere of TM1459 revealed that H52A and H54A/H58A mutants effectively catalyzed the diastereo- and enantio-selective Michael addition reaction of nitroalkanes to an α,β-unsaturated ketone. Moreover, in silico substrate docking signified C106N and F104W single-point mutations, which inverted the diastereoselectivity of H52A and further improved the stereoselectivity of H54A/H58A, respectively.


2021 ◽  
Author(s):  
Marisa L. Martino ◽  
Stephen N. Crooke ◽  
Marianne Manchester ◽  
M.G. Finn

2017 ◽  
Vol 474 (18) ◽  
pp. 3189-3205 ◽  
Author(s):  
Ashoka Chary Taviti ◽  
Tushar Kant Beuria

Cell division in bacteria is a highly controlled and regulated process. FtsZ, a bacterial cytoskeletal protein, forms a ring-like structure known as the Z-ring and recruits more than a dozen other cell division proteins. The Min system oscillates between the poles and inhibits the Z-ring formation at the poles by perturbing FtsZ assembly. This leads to an increase in the FtsZ concentration at the mid-cell and helps in Z-ring positioning. MinC, the effector protein, interferes with Z-ring formation through two different mechanisms mediated by its two domains with the help of MinD. However, the mechanism by which MinD triggers MinC activity is not yet known. We showed that MinD directly interacts with FtsZ with an affinity stronger than the reported MinC–FtsZ interaction. We determined the MinD-binding site of FtsZ using computational, mutational and biochemical analyses. Our study showed that MinD binds to the H10 helix of FtsZ. Single-point mutations at the charged residues in the H10 helix resulted in a decrease in the FtsZ affinity towards MinD. Based on our findings, we propose a novel model for MinCD–FtsZ interaction, where MinD through its direct interaction with FtsZ would trigger MinC activity to inhibit FtsZ functions.


Sign in / Sign up

Export Citation Format

Share Document