Novel RNA recognition motif domain in the cytoplasmic polyadenylation element binding protein 3

2014 ◽  
Vol 82 (10) ◽  
pp. 2879-2886 ◽  
Author(s):  
Kengo Tsuda ◽  
Kanako Kuwasako ◽  
Takashi Nagata ◽  
Mari Takahashi ◽  
Takanori Kigawa ◽  
...  

Development ◽  
2001 ◽  
Vol 128 (16) ◽  
pp. 3169-3177 ◽  
Author(s):  
Jacqueline S. Chang ◽  
Lihua Tan ◽  
Melisande R. Wolf ◽  
Paul Schedl

The orb gene encodes an RNA recognition motif (RRM)-type RNA-binding protein that is a member of the cytoplasmic polyadenylation element binding protein (CPEB) family of translational regulators. Early in oogenesis, orb is required for the formation and initial differentiation of the egg chamber, while later in oogenesis it functions in the determination of the dorsoventral (DV) and anteroposterior axes of egg and embryo. In the studies reported here, we have examined the role of theorb gene in the gurken (grk)-Drosophila epidermal growth factor receptor (DER) signaling pathway. During the previtellogenic stages of oogenesis, the grk-DER signaling pathway defines the posterior pole of the oocyte by specifying posterior follicle cell identity. This is accomplished through the localized expression of Grk at the very posterior of the oocyte. Later in oogenesis, thegrk-DER pathway is used to establish the DV axis. Grk protein synthesized at the dorsal anterior corner of the oocyte signals dorsal fate to the overlying follicle cell epithelium. We show that orb functions in both the early and late grk-DER signaling pathways, and in each case is required for the localized expression of Grk protein. We have found thatorb is also required to promote the synthesis of a key component of the DV polarity pathway, K(10). Finally, we present evidence that Orb protein expression during the mid- to late stages of oogenesis is, in turn, negatively regulated by K(10).



2021 ◽  
Author(s):  
Octavina CA Sukarta ◽  
Qi Zheng ◽  
Erik J Slootweg ◽  
Mark Mekken ◽  
Melanie Mendel ◽  
...  

The activity of intracellular plant Nucleotide-Binding Leucine-Rich Repeat (NB-LRR) immune receptors is fine-tuned by interactions between the receptors and their partners. Identifying NB-LRR interacting proteins is, therefore, crucial to advance our understanding of how these receptors function. A Co-Immunoprecipitation/Mass-Spectrometry screening was performed in Nicotiana benthamiana to identify host proteins associated with the Gpa2 CC-NB-LRR, which confers resistance against the potato cyst nematode Globodera pallida. A combination of biochemical, cellular, and functional assays was used to assess the role of a candidate interactor in defence. A N. benthamiana homolog of the Glycine-Rich RNA-Binding Protein 7 (NbGRP7) protein was prioritized as a novel Gpa2-interacting protein for further investigations. NbGRP7 also associates in planta with the homologous Rx1 receptor, which confers immunity to Potato Virus X. We show that NbGRP7 positively regulates extreme resistance by Rx1 and cell death by Gpa2. Mutating the NbGRP7 RNA recognition motif compromises its role in Rx1-mediated defence. Strikingly, ectopic NbGRP7 expression impacts the steady-state levels of Rx1, which relies on an intact RNA recognition motif. Combined, our findings illustrate that NbGRP7 is a novel pro-immune component in effector-triggered immunity by regulating Gpa2/Rx1 functioning at a post-transcriptional level.



Author(s):  
Nandini Ramesh ◽  
Sukhleen Kour ◽  
Eric N. Anderson ◽  
Dhivyaa Rajasundaram ◽  
Udai Bhan Pandey

Abstract Background Amyotrophic lateral sclerosis (ALS) is an adult-onset, fatal neurodegenerative disease characterized by progressive loss of upper and lower motor neurons. While pathogenic mutations in the DNA/RNA-binding protein Matrin-3 (MATR3) are linked to ALS and distal myopathy, the molecular mechanisms underlying MATR3-mediated neuromuscular degeneration remain unclear. Methods We generated Drosophila lines with transgenic insertion of human MATR3 wildtype, disease-associated variants F115C and S85C, and deletion variants in functional domains, ΔRRM1, ΔRRM2, ΔZNF1 and ΔZNF2. We utilized genetic, behavioral and biochemical tools for comprehensive characterization of our models in vivo and in vitro. Additionally, we employed in silico approaches to find transcriptomic targets of MATR3 and hnRNPM from publicly available eCLIP datasets. Results We found that targeted expression of MATR3 in Drosophila muscles or motor neurons shorten lifespan and produces progressive motor defects, muscle degeneration and atrophy. Strikingly, deletion of its RNA-recognition motif (RRM2) mitigates MATR3 toxicity. We identified rump, the Drosophila homolog of human RNA-binding protein hnRNPM, as a modifier of mutant MATR3 toxicity in vivo. Interestingly, hnRNPM physically and functionally interacts with MATR3 in an RNA-dependent manner in mammalian cells. Furthermore, common RNA targets of MATR3 and hnRNPM converge in biological processes important for neuronal health and survival. Conclusions We propose a model of MATR3-mediated neuromuscular degeneration governed by its RNA-binding domains and modulated by interaction with splicing factor hnRNPM.



2004 ◽  
Vol 3 (3) ◽  
pp. 815-825 ◽  
Author(s):  
Bin Zhao ◽  
Claudia Schneid ◽  
Dobromir Iliev ◽  
Eva-Maria Schmidt ◽  
Volker Wagner ◽  
...  

ABSTRACT The RNA-binding protein CHLAMY 1 from Chlamydomonas reinhardtii binds specifically to UG(≥7) repeat sequences situated in the 3′ untranslated regions of several mRNAs. Its binding activity is controlled by the circadian clock. The biochemical purification and characterization of CHLAMY 1 revealed a novel type of RNA-binding protein. It includes two different subunits (named C1 and C3), whose interaction appears necessary for RNA binding. One of them (C3) belongs to the proteins of the CELF (CUG-BP-ETR-3-like factors) family and thus bears three RNA recognition motif domains. The other is composed of three lysine homology domains and a protein-protein interaction domain (WW). The subunits C1 and C3 have theoretical molecular masses of 45 and 52 kDa, respectively, and are present in nearly equal amounts during the circadian cycle. At the beginning of the subjective night, both can be found in protein complexes of 100 to 160 kDa. However, during subjective day when binding activity of CHLAMY 1 is low, the C1 subunit in addition is present in a high-molecular-mass protein complex of more than 680 kDa. These data indicate posttranslational control of the circadian binding activity of CHLAMY 1. Notably, the C3 subunit shows significant homology to the rat CUG-binding protein 2. Anti-C3 antibodies can recognize the rat homologue, which can also be found in a protein complex in this vertebrate.





1993 ◽  
Vol 13 (8) ◽  
pp. 4860-4874 ◽  
Author(s):  
C Goyer ◽  
M Altmann ◽  
H S Lee ◽  
A Blanc ◽  
M Deshmukh ◽  
...  

The 5' ends of eukaryotic mRNAs are blocked by a cap structure, m7GpppX (where X is any nucleotide). The interaction of the cap structure with a cap-binding protein complex is required for efficient ribosome binding to the mRNA. In Saccharomyces cerevisiae, the cap-binding protein complex is a heterodimer composed of two subunits with molecular masses of 24 (eIF-4E, CDC33) and 150 (p150) kDa. p150 is presumed to be the yeast homolog of the p220 component of mammalian eIF-4F. In this report, we describe the isolation of yeast gene TIF4631, which encodes p150, and a closely related gene, TIF4632. TIF4631 and TIF4632 are 53% identical overall and 80% identical over a 320-amino-acid stretch in their carboxy-terminal halves. Both proteins contain sequences resembling the RNA recognition motif and auxiliary domains that are characteristic of a large family of RNA-binding proteins. tif4631-disrupted strains exhibited a slow-growth, cold-sensitive phenotype, while disruption of TIF4632 failed to show any phenotype under the conditions assayed. Double gene disruption engendered lethality, suggesting that the two genes are functionally homologous and demonstrating that at least one of them is essential for viability. These data are consistent with a critical role for the high-molecular-weight subunit of putative yeast eIF-4F in translation. Sequence comparison of TIF4631, TIF4632, and the human eIF-4F p220 subunit revealed significant stretches of homology. We have thus cloned two yeast homologs of mammalian p220.



Sign in / Sign up

Export Citation Format

Share Document