Fungicide resistance characterised across seven modes of action in Botrytis cinerea isolated from Australian vineyards

2021 ◽  
Author(s):  
Lincoln A. Harper ◽  
Scott Paton ◽  
Barbara Hall ◽  
Suzanne McKay ◽  
Richard P. Oliver ◽  
...  
Plant Disease ◽  
2020 ◽  
Vol 104 (3) ◽  
pp. 787-792
Author(s):  
S. Saito ◽  
F. Wang ◽  
C. L. Xiao

Gray mold caused by Botrytis cinerea is an emerging postharvest disease of mandarin fruit in California. Management of postharvest diseases of mandarins relies on postharvest fungicides; however, multiple resistance to fungicides of different modes of action is common in B. cinerea populations from mandarin, leading to their failure to control decay. Natamycin is commonly used in the food industry as an additive, and it has been registered as a biofungicide for postharvest use on citrus and some other fruits. Sensitivity to natamycin of 64 isolates of B. cinerea from decayed mandarin fruit with known resistance phenotypes to other citrus postharvest fungicides (azoxystrobin, fludioxonil, pyrimethanil, and thiabendazole) was tested. Effective concentrations of natamycin to cause a 50% reduction relative to the control for conidial germination were from 0.324 to 0.567 µg/ml (mean of 0.444 µg/ml), and those for mycelial growth were 1.021 to 2.007 µg/ml (mean of 1.578 µg/ml). Minimum inhibitory concentrations where no fungal growth was present were 0.7 to 1.0 µg/ml for conidial germination and 5.0 to 10.0 µg/ml for mycelial growth. No cross-resistance between natamycin and other citrus postharvest fungicides was detected. Decay control efficacy tests with natamycin were conducted on mandarin fruit inoculated with B. cinerea isolates exhibiting five different fungicide resistance phenotypes, and natamycin significantly reduced incidence and lesion size of gray mold on fruit, regardless of fungicide resistance phenotypes. Natamycin has the potential to be an effective tool for integration into postharvest fungicide programs to control gray mold and manage B. cinerea isolates resistant to fungicides with other modes of action.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
M. H. Rashid ◽  
M. Ashraf Hossain ◽  
M. A. Kashem ◽  
Shiv Kumar ◽  
M. Y. Rafii ◽  
...  

Botrytis gray mold (BGM) caused byBotrytis cinereaPers. Ex. Fr. is an extremely devastating disease of chickpea (Cicer arietinumL.) and has a regional as well as an international perspective. Unfortunately, nonchemical methods for its control are weak and ineffective. In order to identify an effective control measure, six fungicides with different modes of action were evaluated on a BGM susceptible chickpea variety BARIchhola-1 at a high BGM incidence location (Madaripur) in Bangladesh for three years (2008, 2009, and 2010). Among the six fungicides tested, one was protectant [Vondozeb 42SC, a.i. mancozeb (0.2%)], two systemic [Bavistin 50 WP, a.i. carbendazim (0.2%), and Protaf 250EC, propiconazole (0.05%)], and three combination formulations [Acrobat MZ690, dimethomorph 9% + mancozeb 60%, (0.2%); Secure 600 WG, phenomadone + mancozeb (0.2%); and Companion, mancozeb 63% + carbendazim 12% (0.2%)]. The results showed superiority of combination formulations involving both protectant and systemic fungicides over the sole application of either fungicide separately. Among the combination fungicides, Companion was most effective, resulting in the lowest disease severity (3.33 score on 1–9 scale) and the highest increase (38%) of grain yield in chickpea. Therefore, this product could be preferred over the sole application of either solo protectant or systemic fungicides to reduce yield losses and avoid fungicide resistance.


Plant Disease ◽  
2019 ◽  
Vol 103 (6) ◽  
pp. 1213-1219
Author(s):  
Zehua Su ◽  
Xin Zhang ◽  
Jianjiang Zhao ◽  
Wenqiao Wang ◽  
Lei Shang ◽  
...  

To provide a high-throughput, efficient, and accurate method to monitor multiple-fungicide resistance of Botrytis cinerea in the field, we used the suspension array, sequencing, and mycelial growth assay in our research. Discriminating-dose bioassays for detecting carbendazim, diethofencarb, boscalid, and iprodione resistance (CarR, DieR, BosR, and IprR, respectively) were used to analyze 257 isolates collected from Hebei Province in China during 2016 and 2017. High resistance frequencies to carbendazim (100%), diethofencarb (92.08%), and iprodione (86.59%) were detected. BosR isolates accounted for 11.67% of the total. In addition, 103 isolates were randomly selected for phenotype and genotype detection. The high-throughput suspension array was utilized to detect eight genotypes simultaneously, including BenA-E198, BenA-198A, SdhB-H272, SdhB-272Y, BcOS1-I365, BcOS1-365S, erg27-F412, and erg27-412S, which were associated with resistance toward carbendazim or diethofencarb, boscalid, iprodione, and fenhexamid (FenR), respectively. Most of the benzimidazole-resistant isolates (81.55%) possessed the E198V mutation in the BenA gene. Ninety-three isolates with dual resistance to carbendazim and diethofencarb showed the E198V/K mutation. All BosR isolates carried the H272R mutation in the SdhB gene. The I365S and Q369P+N373S (66.99%) mutations in the BcOS1 gene were more frequently observed. No mutation was detected in the erg27 gene in Hebei isolates. There were 13 resistance profile phenotypes. Phenotypes with triple resistance were the most common (83.50%), and CarRDieRBosSIprRFenS was the major type. CarR isolates that carried E198V/K/A were all highly resistant (HR) and only one F200Y mutant was moderately resistant (MR) to carbendazim. Isolates that possessed E198V/K were MR or HR to diethofencarb. BosR isolates that possessed H272R mutation were lowly resistant (LR). IprR isolates were all LR or MR. The distribution of half maximal effective concentrations of CarR isolates with E198V/K mutations and IprR isolates with Q369P+N373S mutations significantly increased from 2016 to 2017. Combined with our observations, a combination method of the high-throughput suspension array and the mycelial growth assay was suggested to accurately monitor multiple resistance of B. cinerea in the field.


2015 ◽  
Vol 77 ◽  
pp. 65-73 ◽  
Author(s):  
Anna Panebianco ◽  
Ivana Castello ◽  
Gabriella Cirvilleri ◽  
Giancarlo Perrone ◽  
Filomena Epifani ◽  
...  

Plant Disease ◽  
2015 ◽  
Vol 99 (2) ◽  
pp. 240-248 ◽  
Author(s):  
Sotirios Konstantinou ◽  
Thomas Veloukas ◽  
Michaela Leroch ◽  
George Menexes ◽  
Matthias Hahn ◽  
...  

Botrytis cinerea is a pathogen with high genetic variability that has also shown high risk for fungicide resistance development. In total, 1,169 isolates obtained from strawberry (n = 297) and tomato (n = 872) in five geographic regions of Greece were tested for their sensitivity to several botryticides. A high frequency of isolates with multiple resistance to carbendazim, cyprodinil, pyraclostrobin, and boscalid was found in isolates from strawberry. In the isolates from tomato, the predominant phenotype was that of dual resistance to carbendazim and cyprodinil in the Crete island, of single resistance to carbendazim in the region of Preveza, and of sensitive isolates in the region of Kyparissia. None of the tested isolates was found to be fludioxonil resistant. High frequencies of boscalid-resistant phenotypes were observed in the strawberry isolates, while boscalid-resistance frequency in the tomato isolates was lower. H272R was the predominant sdhB mutation, associated with resistance to boscalid, in all the sampled isolates, while other sdhB mutations were found at low frequencies. B. cinerea group S, identified by the presence of a 21-bp insertion in the transcription factor mrr1 gene, was predominant within the tomato isolates obtained from all three sampled regions, with frequencies ranging from 62 to 75% of the isolates; whereas, within strawberry isolates, B. cinerea was predominant, with frequencies of 75 to 95%. Correlations of isolate genotype and fungicide resistance profile showed that B. cinerea sensu stricto isolates were more prone to the development of resistance to boscalid compared with the Botrytis group S isolates, which may explain the observed predominance of B. cinerea sensu stricto in strawberry fields.


2021 ◽  
Author(s):  
Lincoln A. Harper ◽  
Scott Paton ◽  
Barbara Hall ◽  
Suzanne McKay ◽  
Richard P. Oliver ◽  
...  

AbstractGray mold, caused by Botrytis cinerea, is an economically important disease of grapes in Australia and across grape growing regions worldwide. Control of this disease relies heavily on canopy management and the application of single site fungicides. Fungicide application can lead to the selection of fungicide resistant B. cinerea populations, which has an adverse effect on the chemical control of the disease. Characterising the distribution and severity of resistant B. cinerea populations is needed to inform resistance management strategies. In this study, 725 isolates were sampled from 75 Australian vineyards during 2013 – 2016 and were screened against seven fungicides with different MOAs. The resistance frequencies for azoxystrobin, boscalid, fenhexamid, fludioxonil, iprodione, pyrimethanil and tebuconazole were 5, 2.8, 2.1, 6.2, 11.6, 7.7 and 2.9% respectively. Nearly half of the resistant isolates (43.7%) were resistant to more than one of the fungicides tested. The frequency of vineyards with at least one isolate simultaneously resistant to 1, 2, 3, 4 or 5 fungicides was 19.5, 7.8, 6.5, 10.4 and 2.6%.Resistance was associated with previously published genotypes in CytB (G143A), SdhB (H272R/Y), Erg27 (F412S), Mrr1 (D354Y), Os1 (I365S, N373S + Q369P, I365S + D757N) and Pos5 (P319A, L412F). Expression analysis was used to characterise fludioxonil resistant isolates exhibiting overexpression (6.3 - 9.6-fold) of the ABC transporter encoded by AtrB (MDR1 phenotype). Novel genotypes were also described in Mrr1 (S611N, D616G) and Cyp51 (P357S). Resistance frequencies were lower when compared to most previously published surveys of both grape and non-grape B. cinerea resistance. Nonetheless, continued monitoring of critical chemical groups used in Australian vineyards is recommended.


2014 ◽  
Vol 104 (12) ◽  
pp. 1264-1273 ◽  
Author(s):  
Frank van den Bosch ◽  
Neil Paveley ◽  
Femke van den Berg ◽  
Peter Hobbelen ◽  
Richard Oliver

We have reviewed the experimental and modeling evidence on the use of mixtures of fungicides of differing modes of action as a resistance management tactic. The evidence supports the following conclusions. 1. Adding a mixing partner to a fungicide that is at-risk of resistance (without lowering the dose of the at-risk fungicide) reduces the rate of selection for fungicide resistance. This holds for the use of mixing partner fungicides that have either multi-site or single-site modes of action. The resulting predicted increase in the effective life of the at-risk fungicide can be large enough to be of practical relevance. The more effective the mixing partner (due to inherent activity and/or dose), the larger the reduction in selection and the larger the increase in effective life of the at-risk fungicide. 2. Adding a mixing partner while lowering the dose of the at-risk fungicide reduces the selection for fungicide resistance, without compromising effective disease control. The very few studies existing suggest that the reduction in selection is more sensitive to lowering the dose of the at-risk fungicide than to increasing the dose of the mixing partner. 3. Although there are very few studies, the existing evidence suggests that mixing two at-risk fungicides is also a useful resistance management tactic. The aspects that have received too little attention to draw generic conclusions about the effectiveness of fungicide mixtures as resistance management strategies are as follows: (i) the relative effect of the dose of the two mixing partners on selection for fungicide resistance, (ii) the effect of mixing on the effective life of a fungicide (the time from introduction of the fungicide mode of action to the time point where the fungicide can no longer maintain effective disease control), (iii) polygenically determined resistance, (iv) mixtures of two at-risk fungicides, (v) the emergence phase of resistance evolution and the effects of mixtures during this phase, and (vi) monocyclic diseases and nonfoliar diseases. The lack of studies on these aspects of mixture use of fungicides should be a warning against overinterpreting the findings in this review.


Plant Disease ◽  
2019 ◽  
Vol 103 (7) ◽  
pp. 1577-1583 ◽  
Author(s):  
M. Muñoz ◽  
J. E. Faust ◽  
G. Schnabel

Botrytis cinerea Pers. infects cut flower roses (Rosa × hybrida L.) during greenhouse production and gray mold symptoms are often expressed in the postharvest environment, resulting in significant economic losses. Disease management is based on cultural practices and preventative chemical treatments; however, gray mold outbreaks continue to occur. Rose tissues from six commercial shipments from two greenhouses in Colombia were evaluated to determine the Botrytis species composition as well as identify other pathogens present, gray mold incidence and severity, and fungicide resistance profiles. Botrytis isolates (49 total) were grouped into six morphological phenotypes, and all were identified to be B. cinerea sensu stricto. Disease incidence was higher in the petals than in the stem, stamen, ovary, sepal, or leaf tissues. Other fungi were isolated infrequently and included Alternaria alternata, Cladosporium cladosporioides, Epicoccum nigrum, Penicillium citrinum, Aspergillus brasiliensis, and Diplodia sp. Fungicide resistance profiles were determined using previously established discriminatory doses. Isolates resistant to thiophanate-methyl, iprodione, boscalid, and cyprodinil were found frequently in all shipments and in both greenhouses. The frequency of resistance to penthiopyrad, fenhexamid, fluopyram, isofetamid, and fludioxonil varied between shipments and greenhouses. No resistance to pydiflumetofen was observed at the discriminatory doses tested. Isolates with resistance to multiple chemical classes were commonly found. These results indicate that fungicide resistance management practices may improve preharvest and postharvest gray mold control of cut flower roses.


2019 ◽  
Vol 127 (1) ◽  
pp. 123-127
Author(s):  
Domenico Bertetti ◽  
Matteo Monchiero ◽  
Angelo Garibaldi ◽  
Maria Lodovica Gullino

Sign in / Sign up

Export Citation Format

Share Document