Transient functions for plastic strain rate changes

1976 ◽  
Vol 38 (2) ◽  
pp. 539-546 ◽  
Author(s):  
B. Wielke ◽  
G. Schoeck
1993 ◽  
Vol 115 (2) ◽  
pp. 200-203 ◽  
Author(s):  
Z. Xia ◽  
F. Ellyin

Constant strain-rate plastic straining followed by creep tests were conducted to investigate the effect of prior plastic straining on the subsequent creep behavior of 304 stainless steel at room temperature. The effects of plastic strain and plastic strain-rate were delineated by a specially designed test procedure, and it is found that both factors have a strong influence on the subsequent creep deformation. A creep model combining the two factors is then developed. The predictions of the model are in good agreement with the test results.


1998 ◽  
Vol 552 ◽  
Author(s):  
B. Matterstock ◽  
G. Saada ◽  
J. Bonneville ◽  
J. L Martin

ABSTRACTThe characterisation of dislocation mechanisms in connection with macroscopic mechanical properties are usually performed through transient tests, such as strain-rate jumps, load relaxations or creep experiments. The present paper includes a careful and complete theoretical analysis of the relaxation and the creep kinetics. We experimentally show that the plastic strain-rate is continuous at the transition between constant strain-rate conditions and both load relaxation and creep test. The product of the plastic strain-rate at the onset of the transient test () with the characteristic time (tk) of the transient is found to be independent of , as theoretically expected. This is a clear indication that the assumptions underlying the theoretical analysis are relevant.


2009 ◽  
Vol 407-408 ◽  
pp. 490-493 ◽  
Author(s):  
Xue Feng Bi ◽  
Gautier List ◽  
Yong Xian Liu

The streamline method was used to investigate the plastic strain rate in machining. The streamline function presented in this paper is a general equation with three parameters controlling the complex variation of flow line shape. Velocity and deformation field were obtained by streamline analysis. The validation of this model was conducted by comparing with other experimental results published. It shows that the streamline model presented in the paper can be applied to the evaluation of strain rate in machining.


2017 ◽  
Vol 84 (11) ◽  
Author(s):  
Heling Wang ◽  
Dong-Jie Jiang ◽  
Li-Yuan Zhang ◽  
Bin Liu

Volume conservation during plastic deformation is the most important feature and should be realized in elastoplastic theories. However, it is found in this paper that an elastoplastic theory is not volume conserved if it improperly sets an arbitrary plastic strain rate tensor to be deviatoric. We discuss how to rigorously realize volume conservation in finite strain regime, especially when the unloading stress free configuration is not adopted in the elastoplastic theories. An accurate condition of volume conservation is first clarified and used in this paper that the density of a volume element after the applied loads are completely removed should be identical to that of the initial stress free states. For the elastoplastic theories that adopt the unloading stress free configuration (i.e., the intermediate configuration), the accurate condition of volume conservation is satisfied only if specific definitions of the plastic strain rate are used among many other different definitions. For the elastoplastic theories that do not adopt the unloading stress free configuration, it is even more difficult to realize volume conservation as the information of the stress free configuration lacks. To find a universal approach of realizing volume conservation for elastoplastic theories whether or not adopt the unloading stress free configuration, we propose a single assumption that the density of material only depends on the trace of the Cauchy stress by using their objectivities. Two strategies are further discussed to satisfy the accurate condition of volume conservation: directly and slightly revising the tangential stiffness tensor or using a properly chosen stress/strain measure and elastic compliance tensor. They are implemented into existing elastoplastic theories, and the volume conservation is demonstrated by both theoretical proof and numerical examples. The potential application of the proposed theories is a better simulation of manufacture process such as metal forming.


2018 ◽  
Vol 45 (2) ◽  
pp. 177-188
Author(s):  
Adebowale Borokinni ◽  
Odunayo Fadodun ◽  
Adegbola Akinola

This article considers a plane strain gradient plasticity theory of the Gurtin?Anand model [M. Gurtin, L. Anand, A theory of strain gradient plasticity for isotropic, plastically irrotational materials Part I: Small deformations, J. Mech. Phys. Solids 53 (2005), 1624?1649] for an isotropic material undergoing small deformation in the absence of plastic spin. It is assumed that the system of microstresses is purely dissipative, so that the free energy reduces to a function of the elastic strain, while the microstresses are only related to the plastic strain rate and gradient of the plastic strain rate via the constitutive relations. The plane strain problem of the Gurtin?Anand model for a purely dissipative process gives rise to elastic incompressibility. A weak formulation of the flow rule is derived, making the plane strain problem suitable for finite element implementation.


Author(s):  
Run-Hua Song ◽  
Hai-Long Qin ◽  
Dongfeng Li ◽  
Zhong-Nan Bi ◽  
Esteban P. Busso ◽  
...  

Abstract The effects of Dynamic Strain Ageing (DSA) on residual stresses generated in Ni-base superalloys during heat treatments are not well understood. In this work, the residual stress field induced by water quenching an IN718 disc while undergoing DSA is studied using coupled thermo-mechanical finite element analyses in conjunction with neutron diffraction (ND) measurements. A visco-plastic constitutive model which incorporates the effect of DSA is proposed to describe the experimentally observed negative strain rate sensitivity and abnormal temperature dependence phenomena in the stress-strain response of solid solution treated IN718. The predicted quenching residual stresses in the disc agree well with the ND measurements. Due to the DSA, a propagating high plastic strain rate region can be identified in the disc during the early stages of the quenching process. Due to the negative strain rate sensitivity and abnormal temperature dependence effects caused by DSA, the predicted residual stresses are approximately 10% greater than when those two effects are not accounted for. The effects of different convection heat transfer conditions in the FE model are examined and discussed. It is found that the convection heat transfer coefficients have a great influence both on the disc residual stresses and DSA-related plastic strain rate field predictions.


Sign in / Sign up

Export Citation Format

Share Document