An Assessment of the Method Used to Determine Activation Parameters in L12 Alloys

1998 ◽  
Vol 552 ◽  
Author(s):  
B. Matterstock ◽  
G. Saada ◽  
J. Bonneville ◽  
J. L Martin

ABSTRACTThe characterisation of dislocation mechanisms in connection with macroscopic mechanical properties are usually performed through transient tests, such as strain-rate jumps, load relaxations or creep experiments. The present paper includes a careful and complete theoretical analysis of the relaxation and the creep kinetics. We experimentally show that the plastic strain-rate is continuous at the transition between constant strain-rate conditions and both load relaxation and creep test. The product of the plastic strain-rate at the onset of the transient test () with the characteristic time (tk) of the transient is found to be independent of , as theoretically expected. This is a clear indication that the assumptions underlying the theoretical analysis are relevant.

1993 ◽  
Vol 115 (2) ◽  
pp. 200-203 ◽  
Author(s):  
Z. Xia ◽  
F. Ellyin

Constant strain-rate plastic straining followed by creep tests were conducted to investigate the effect of prior plastic straining on the subsequent creep behavior of 304 stainless steel at room temperature. The effects of plastic strain and plastic strain-rate were delineated by a specially designed test procedure, and it is found that both factors have a strong influence on the subsequent creep deformation. A creep model combining the two factors is then developed. The predictions of the model are in good agreement with the test results.


1996 ◽  
Vol 460 ◽  
Author(s):  
B. Viguier ◽  
J. Bonneville ◽  
P. Spätig ◽  
J. L. Martin

ABSTRACTTwo types of transient creep experiments performed along stress-strain curves are described and successfully applied to γ TiAl polycrystals at room temperature. They allow to determine activation volumes in good agreement with those measured through successive load relaxation tests. In addition, the combination of the latter method and the present ones provides relevant values of the plastic strain hardening coefficient. This latter parameter is found to exhibit similar values in transient as well as during constant strain rate tests.


2009 ◽  
Vol 407-408 ◽  
pp. 490-493 ◽  
Author(s):  
Xue Feng Bi ◽  
Gautier List ◽  
Yong Xian Liu

The streamline method was used to investigate the plastic strain rate in machining. The streamline function presented in this paper is a general equation with three parameters controlling the complex variation of flow line shape. Velocity and deformation field were obtained by streamline analysis. The validation of this model was conducted by comparing with other experimental results published. It shows that the streamline model presented in the paper can be applied to the evaluation of strain rate in machining.


1969 ◽  
Vol 8 (54) ◽  
pp. 463-473 ◽  
Author(s):  
S. J. Jones ◽  
J. W. Glen

AbstractResults obtained from tensile and compressive tests on pure ice single crystals at various temperatures down to −90°C are reported. At −50°C tensile creep tests give a continually increasing creep rate until fracture, as observed at higher temperatures. The stress dependence of the strain-rate is discussed. Fracture stress increases with decreasing temperature. Results from constant strain-rate compressive tests are compared with theoretical curves computed from Johnston’s (1962) theory of dislocation multiplication. A dislocation velocity of the order of 0.5×10−8 m s−1 is deduced for ice at −50°C.


2017 ◽  
Vol 84 (11) ◽  
Author(s):  
Heling Wang ◽  
Dong-Jie Jiang ◽  
Li-Yuan Zhang ◽  
Bin Liu

Volume conservation during plastic deformation is the most important feature and should be realized in elastoplastic theories. However, it is found in this paper that an elastoplastic theory is not volume conserved if it improperly sets an arbitrary plastic strain rate tensor to be deviatoric. We discuss how to rigorously realize volume conservation in finite strain regime, especially when the unloading stress free configuration is not adopted in the elastoplastic theories. An accurate condition of volume conservation is first clarified and used in this paper that the density of a volume element after the applied loads are completely removed should be identical to that of the initial stress free states. For the elastoplastic theories that adopt the unloading stress free configuration (i.e., the intermediate configuration), the accurate condition of volume conservation is satisfied only if specific definitions of the plastic strain rate are used among many other different definitions. For the elastoplastic theories that do not adopt the unloading stress free configuration, it is even more difficult to realize volume conservation as the information of the stress free configuration lacks. To find a universal approach of realizing volume conservation for elastoplastic theories whether or not adopt the unloading stress free configuration, we propose a single assumption that the density of material only depends on the trace of the Cauchy stress by using their objectivities. Two strategies are further discussed to satisfy the accurate condition of volume conservation: directly and slightly revising the tangential stiffness tensor or using a properly chosen stress/strain measure and elastic compliance tensor. They are implemented into existing elastoplastic theories, and the volume conservation is demonstrated by both theoretical proof and numerical examples. The potential application of the proposed theories is a better simulation of manufacture process such as metal forming.


The mechanical properties of pure iron single crystals and of polycrystalline specimens of a zone-refined iron have been measured in compression over the temperature and strain rate ranges 2.2 to 293 °K and 7 x 10 -7 to 7 x 10 -3 s -1 respectively. Various yield stress parameters were determined as functions of both temperature and strain rate, and the reversible changes in flow stress produced by isothermal changes of strain rate or by changes of temperature at constant strain rate were also measured as functions of temperature, strain and strain rate. Both the temperature variation of the flow stress and the strain rate sensitivity of the flow stress were generally identical for the single crystals ( ca. 0.005/M carbon) and the polycrystalline specimens ( ca. 9/M carbon). At low temperatures, the temperature dependence of the yield stress was smaller than that of the flow stress at high strains, probably because of the effects of mechanical twinning, but once again the behaviour of single and polycrystalline specimens was very similar. Below 10 °K, both the flow stress and the extrapolated yield stress were independent of temperature. The results show that macroscopic yielding and flow at low temperatures are both governed by the same deformation mechanism, which is not very impurity sensitive, even in the very low carbon range covered by the experiments. The flow stress near 0 °K is ca. 5.8 x 10 -3 u where [i is the shear modulus. On the basis of a model for thermally activated flow, the activation volume at low temperatures (high stresses) is found to be ca. 5 b 3 . The exponent in the empirical power law for the dislocation velocity against stress relation is ca. 3 near room temperature, but becomes quite large at low temperatures. The results indicate that macroscopic deformation at low temperatures is governed by some kind of lattice frictional stress (Peierls-Nabarro force) acting on dislocations.


1976 ◽  
Vol 38 (2) ◽  
pp. 539-546 ◽  
Author(s):  
B. Wielke ◽  
G. Schoeck

Sign in / Sign up

Export Citation Format

Share Document