An Experimental Study on the Effect of Prior Plastic Straining on Creep Behavior of 304 Stainless Steel

1993 ◽  
Vol 115 (2) ◽  
pp. 200-203 ◽  
Author(s):  
Z. Xia ◽  
F. Ellyin

Constant strain-rate plastic straining followed by creep tests were conducted to investigate the effect of prior plastic straining on the subsequent creep behavior of 304 stainless steel at room temperature. The effects of plastic strain and plastic strain-rate were delineated by a specially designed test procedure, and it is found that both factors have a strong influence on the subsequent creep deformation. A creep model combining the two factors is then developed. The predictions of the model are in good agreement with the test results.

1995 ◽  
Vol 117 (3) ◽  
pp. 260-268 ◽  
Author(s):  
Han C. Wu ◽  
Chin C. Ho

Creep of metals has been investigated by means of the endochronic constitutive equation. This is a unified approach. Transient creep tests have been conducted on 304 stainless-steel specimens with carefully monitored precreep loading stage, either loaded at a prescribed constant strain-rate or at a constant stress-rate. It has been found that, for the same hold stress, the creep strain is larger for test with a constant stress-rate preloading than that for a constant strain-rate preloading. This is an effect of plasticity-creep interaction. In all cases, the initial creep strain rate is a continuation of the preloading strain rate. The theory satisfactorily describes the experimental results.


2008 ◽  
Vol 378-379 ◽  
pp. 371-384 ◽  
Author(s):  
George C. Kaschner ◽  
Jeffrey C. Gibeling

Strain rate jump tests were performed during low cycle fatigue using plastic strain rate as the real time computed control variable. Test materials included OFE polycrystalline copper, AA7075-T6 aluminum, and 304 stainless steel. The evolution of dislocation interactions was observed by evaluating the activation area and true stress as a function of cumulative plastic strain. Activation area values for each of the three materials were evaluated from an initial state to saturation. All three materials exhibit a deviation from Cottrell-Stokes law during cyclic deformation. Tests performed on each of the three materials at saturation reveal a dependence of activation area on plastic strain amplitude for copper and aluminum but no such relationship for stainless steel. These results reflect a contrast between wavy slip for pure copper and 7075 aluminum versus planar slip for 304 stainless steel tested at room temperature. Dislocation motion in copper transitions from forest dislocation cutting [1-6] to increasing contributions of cross slip. Dislocation motion in 7075 aluminum and 304 stainless steel is controlled by obstacles that are characteristically more thermal than forest dislocations: obstacles in 7075-T6 aluminum are identified as solutes from re-dissolved particles; obstacles in 304 stainless steel are also solutes.


1998 ◽  
Vol 552 ◽  
Author(s):  
B. Matterstock ◽  
G. Saada ◽  
J. Bonneville ◽  
J. L Martin

ABSTRACTThe characterisation of dislocation mechanisms in connection with macroscopic mechanical properties are usually performed through transient tests, such as strain-rate jumps, load relaxations or creep experiments. The present paper includes a careful and complete theoretical analysis of the relaxation and the creep kinetics. We experimentally show that the plastic strain-rate is continuous at the transition between constant strain-rate conditions and both load relaxation and creep test. The product of the plastic strain-rate at the onset of the transient test () with the characteristic time (tk) of the transient is found to be independent of , as theoretically expected. This is a clear indication that the assumptions underlying the theoretical analysis are relevant.


1986 ◽  
Vol 108 (2) ◽  
pp. 119-126 ◽  
Author(s):  
S. Murakami ◽  
N. Ohno ◽  
H. Tagami

In order to evaluate the validity and limitations of the creep-hardening surface model proposed by the present authors, a series of creep tests for type 304 stainless steel were performed at 600°C under various non-steady multiaxial loadings. The test time and the interval of stress change were 960 hr and 48 or 96 hr, respectively, and five kinds of stress histories consisting of randomly varying stress magnitude, stress direction and interval of stress change were employed. It was found that the creep-hardening surface model describes sufficiently well the creep behavior observed in this work.


1985 ◽  
Vol 107 (4) ◽  
pp. 307-315 ◽  
Author(s):  
D. L. McDowell

Three type 304 stainless steel specimens of the same geometry were subjected to complex, cyclic axial-torsional histories characterized by varying degrees of non-proportionality of straining. All tests were at room-temperature. The data from cyclically stable hysteresis loops were reduced and the direction of the plastic strain rate vector, variation of plastic hardening modulus, and direction of translation of a rate and time-independent yield surface were studied. It is shown that the independent variables in a Mroz-type formulation map the experimental results with a higher degree of uniqueness than other popular formulations studied for both the hardening modulus and direction of yield surface translation. Also, the plastic strain rate is not, in general, in the direction of the deviatoric stress or stress rate.


1996 ◽  
Vol 460 ◽  
Author(s):  
B. Viguier ◽  
J. Bonneville ◽  
P. Spätig ◽  
J. L. Martin

ABSTRACTTwo types of transient creep experiments performed along stress-strain curves are described and successfully applied to γ TiAl polycrystals at room temperature. They allow to determine activation volumes in good agreement with those measured through successive load relaxation tests. In addition, the combination of the latter method and the present ones provides relevant values of the plastic strain hardening coefficient. This latter parameter is found to exhibit similar values in transient as well as during constant strain rate tests.


1982 ◽  
Vol 104 (3) ◽  
pp. 159-164 ◽  
Author(s):  
Y. Ohashi ◽  
N. Ohno ◽  
M. Kawai

Four kinds of creep constitutive models, i.e., strain-hardening, modified strain-hardening, kinematic-hardening, and mixed-hardening theory, are evaluated on the basis of creep-test results on type 304 stainless steel at 650°C under repeated multiaxial loading. The predictions of the four models are compared with the experimental results. It is shown that substantial differences appear among these predictions under large rotations of the principal axes of the deviatoric stress tensor, and that none of them can describe with sufficient accuracy the transient increase of strain-rate and the noncollinearity between the deviatoric stress and creep strain-rate vectors which are observed just after the stress-rotations.


Sign in / Sign up

Export Citation Format

Share Document