Effect of the hydrogen flow rate on the structural and optical properties of hydrogenated amorphous silicon thin films prepared by plasma enhanced chemical vapor deposition

2012 ◽  
Vol 9 (10-11) ◽  
pp. 2180-2183 ◽  
Author(s):  
Sana Ben Amor ◽  
Wissem Dimassi ◽  
Mohamed Ali Tebai ◽  
Hatem Ezzaouia
2011 ◽  
Vol 383-390 ◽  
pp. 6980-6985
Author(s):  
Mao Yang Wu ◽  
Wei Li ◽  
Jun Wei Fu ◽  
Yi Jiao Qiu ◽  
Ya Dong Jiang

Hydrogenated amorphous silicon (a-Si:H) thin films doped with both Phosphor and Nitrogen are deposited by ratio frequency plasma enhanced chemical vapor deposition (PECVD). The effect of gas flow rate of ammonia (FrNH3) on the composition, microstructure and optical properties of the films has been investigated by X-ray photoelectron spectroscopy, Raman spectroscopy and ellipsometric spectra, respectively. The results show that with the increase of FrNH3, Si-N bonds appear while the short-range order deteriorate in the films. Besides, the optical properties of N-doped n-type a-Si:H thin films can be easily controlled in a PECVD system.


1999 ◽  
Vol 593 ◽  
Author(s):  
Lih-Hsiung Chan ◽  
Wei-Zen Chou ◽  
Lih-Hsin Chou

ABSTRACTHydrogenated amorphous silicon carbide films (a -SiC:H) were prepared from CH4, SiH4, and Ar mixtures by Electron Cyclotron Resonance Plasma Chemical Vapor Deposition (ECR PCVD). The deposition of the thin films was proceeded with the following optimized conditions; microwave power: 900W, Ar flux : 90sccm, and total flux: 113.4 sccm. The substrate temperature was around 100∼120°C during deposition. For comparisons, the relative flux ratio of methane to silane was varied to produce thin films of different compositions to investigate the relationships between the associated compositions of films and their corresponding microstructures and optical properties. Moreover, both film's microstructures and their optical properties were analyzed to find out as to how they are interrelated. Furthermore, the surface morphology and amorphous microstructures were confirmed by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM), respectively. And, x-ray Photoelectron Spectroscopy (XPS) was employed to study the relative atomic ratio of C to Si along with the bonding conditions in the thin films. Finally, the Hydrogen concentration and the amounts of C-H and Si-H bonds were determined by Fourier transform infrared spectroscopy(FTIR), while the optical properties were measured by optical spectrophotometer.


Sign in / Sign up

Export Citation Format

Share Document