Determination of the single crystal Ge Young’s modulus between room temperature and melting temperature using the impulse excitation technique

2014 ◽  
Vol 11 (11-12) ◽  
pp. 1566-1569 ◽  
Author(s):  
Akhilesh K. Swarnakar ◽  
Omer Van der Biest ◽  
Jan Van Humbeeck ◽  
Jan Vanhellemont
2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Osvail André Quaglio ◽  
José Margarida da Silva ◽  
Edmo da Cunha Rodovalho ◽  
Leandro de Vilhena Costa

The elasticity is an important parameter for the evaluation of the mechanical behavior of a rock mass and a fundamental factor in the definition of the resistance characteristics, stability, and blastability in rock blasts, and it is an important parameter for the blastability equations like the Kuz–Ram method. This paper presents a comparison of the Uniaxial Compression Method (UCM) and the Impulse Excitation Technique (IET) in determining Young’s modulus. The IET is a static and nondestructive dynamic method of characterizing mechanical parameters of materials, while the UCM is a quasistatic and destructive method. We determined Young’s modulus of samples from nine basalt and diabase mines used as aggregates in the construction industry. Young’s modulus was determined by the acoustic response due to longitudinal oscillations caused by a mechanical impulse (IET) in the Sonelastic equipment and the stress-strain curve (UCM). Young’s modulus values showed high repeatability and agreed with those reported in the literature for the same material. The work shows that the solnelastic is an innovate equipment and elucidated advantages of IET in comparison to the UCM such as shorter execution time, greater safety, and a lower cost ranging from 11.5% to 22.5% of the UCM.


2016 ◽  
Vol 32 (3) ◽  
pp. 497-511 ◽  
Author(s):  
M.F. Slim ◽  
A. Alhussein ◽  
A. Billard ◽  
F. Sanchette ◽  
M. François

Abstract


1985 ◽  
Vol 18 (6) ◽  
pp. 513-518 ◽  
Author(s):  
M. Hayakawa ◽  
S. Imai ◽  
M. Oka

A method for determining cubic stiffness constants from polcrystalline Young's modulus and X-ray elastic constants is described. The relations used among these elastic constants are those based on Kröner's quasiisotropic model. The X-ray elastic constants required [S1(hkl)] are obtained by measuring various (hkl) d spacings of a stressed specimen under symmetric θ–2θ scan mode. An application to an Fe–31Ni alloy has given the results: C 11 = 1.47, C 12 = 1.05 and C 44 = 1.24 × 1011 Pa.


2013 ◽  
Vol 11 (1) ◽  
pp. 150-155 ◽  
Author(s):  
Akhilesh K. Swarnakar ◽  
Omer Van der Biest ◽  
Jan Vanhellemont

2018 ◽  
Vol 7 (2.23) ◽  
pp. 99 ◽  
Author(s):  
M A. Othuman Mydin ◽  
N Mohamad ◽  
I Johari ◽  
A A. Abdul Samad

This paper focuses on laboratory investigation to scrutinize and portray the Young’s modulus of cellular mortar exposed to high temperatures. Two densities of cellular mortar of 600 and 900 kg/m3 density were cast and tested under axial compression and 3-point bending. The tests were performed at room temperature, 105°C, 205°C, 305°C, 405°C, 505°C, and 605°C. The results of this study consistently indicated that the loss in toughness for cement based material like cellular mortar exposed to high temperatures happens principally after 105°C, irrespective of density of cellular mortar. This specifies that the principal contrivance instigating stiffness deprivation is micro cracking in the cement matrix, which happens as water magnifies and disappears from the porous body. As projected, decreasing the density of cellular mortar diminishes its compressive strength and bending strength. Though, for cellular mortar of different densities, the normalized strength-temperature and Young’s modulus-temperature relationships are comparable.  


Sign in / Sign up

Export Citation Format

Share Document