In Vitro and In Vivo Inhibitory Activities of Four Indian Medicinal Plant Extracts and their Major Components on Rat Aldose Reductase and Generation of Advanced Glycation Endproducts

2012 ◽  
Vol 27 (5) ◽  
pp. 753-760 ◽  
Author(s):  
Ajmeera Rama Rao ◽  
Ciddi Veeresham ◽  
Kaleab Asres
2005 ◽  
Vol 77 (1) ◽  
pp. 41-51 ◽  
Author(s):  
A. Gurib-Fakim ◽  
H. Subratty ◽  
F. Narod ◽  
J. Govinden-Soulange ◽  
F. Mahomoodally

The Mauritian population has a long tradition in the use of ethno-medicine, and the practice is still strong, especially in the treatment of minor ailments. Such interest stems from an existing culture, and many “tisanes” are still prepared from plant materials and sold in several markets around the island.This paper will focus on the various chemical/biological screening techniques currently being used to evaluate the biological properties of medicinal plant extracts. Particular emphasis will be put on extraction and various screening for biological/pharmacological properties. Due consideration will be given to the pharmacological approaches that utilize different animal models for the in vitro and in vivo screening of medicinal plant extracts.


Author(s):  
Annayara C. F. Fernandes ◽  
Jeane B. Melo ◽  
Vanize M. Genova ◽  
Ádina L. Santana ◽  
Gabriela Macedo

Background: Glycation is a chemical reaction that synthesize advanced glycation endproducts (AGEs). The AGEs irreversibly damage macromolecules present in tissues and organs, leading to the impairment of biological functions. For instance, the accumulation of AGEs induces oxidative stress and consequently inflammatory responses in human body, leading to the on set/worsening of diseases, including obesity, asthma, cognitive impairment, and cancer. There is a current demand on natural and low-cost sources of antiglycant agents. As a result, food phytochemicals presented promising results to inhibit glycation and consequently, the formation of AGEs. Objective: Here, we describe the mechanism of glycation on the worsening of diseases, the methods os detection, and the current findings on the use of phytochemicals (phenolic compounds, phytosterols, carotenoids, terpenes and vitamins) as natural therapeuticals to inhibit health damages via inhibition of AGEs in vitro and in vivo. Methods: This manuscript reviewed publications available in the PubMed and Science Direct databases dated from the last 20 years on the uses of phytochemicals to inhibit the AGEs in vitro and in vivo. Also, recent patents on the use of anti-glycant drugs were reviewed using the Google Advanced Patents database. Results and Discussion: Phenolic compounds have been mostly studied to inhibit AGEs. Food phytochemicals derived from agroindustry wastes, including peanut skins, and the bagasses derived from citrus and grapes are promising antiglycant agents via scavenging of free radicals, metal ions, the suppression of metabolic pathways that induces inflammation, the activation of pathways that promote antioxidant defense, the blocking of AGE connection with the receptor for advanced glycation endproducts (RAGE). Conclusion: Phytochemicals derived from agroindustry are promising anti-glycants, which can be included to replace synthetic drugs for AGE inhibition, and consequently to act as a therapeutical strategy to prevent and treat diseases caused by AGEs, including diabetes, ovarian cancer, osteoporosis, and Alzheimer’s disease.


2020 ◽  
Vol 08 ◽  
Author(s):  
Eugenia Dumitra Teodor ◽  
Gabriel Lucian Radu

Background:: Phyto, or plant-derived metal nanoparticles are an interesting and intensive studied group of green synthesized nanoparticles. In the last decade, numerous medicinal plant extracts were used to the synthesis of stable gold or silver nanoparticles with diverse biological effects, such as antioxidant activity, antimicrobial activity, antiinflammatory activity, hypoglycemic effect, antitumor activity and catalytic activity. Results:: This review has systematized and discussed information from the last 5 years about the research regarding antitumor/anticancer potential of gold nanoparticles obtained via medicinal plant extracts, with special attention on their selective cytotoxicity on tumor cells and on their mechanism of action, in vitro and in vivo assessments. Conclusion:: Much more in vivo and clinical studies are needed before considering phyto-synthesized gold nanoparticles as significant for future medicine.


2019 ◽  
Vol 160 (40) ◽  
pp. 1567-1573 ◽  
Author(s):  
Kinga Makk-Merczel ◽  
András Szarka

Abstract: The relationship between the potentially developing complications of the 451 million people affected by diabetes and hyperglycaemia can be based on the enhanced generation of advanced glycation endproducts and the more intensive oxidative and carbonyl stress. Advanced glycation endproducts generated partly due to carbonyl stress play an important role in the pathogenesis of diabetic complications such as elevated arterial thickness, vascular permeability, enhanced angiogenesis or the more rigid vessels induced nephropathy, neuropathy, retinopathy. Furthermore, the elevated thrombocyte aggregation, the reduced fibrinolysis induced elevated coagulation, and the atherosclerosis or the mitochondrial dysfunction are important as well. The most potent target of both the non-oxidative and oxidative generation of advanced glycation endproducts can be the scavenging of α,β-unsaturated aldehydes. Although, aminoguanidine, the prototype of scavenger molecules, showed protection in different animal models, it failed in the human clinical studies. Finally, the clinical studies were terminated almost 20 years ago. The endogen dipeptide L-carnosine was also expected to mitigate the complications due to carbonyl stress. However, its clinical significance was limited by the serum carnosinases and by the consequent low serum stability and bioavailability. The carnosinase resistance of the molecule can be achieved by the change of the carboxyl group of the molecule to hydroxyl group. At the same time, the biosafety and the carbonyl stress scavenging activity of the molecule could be preserved. Although clinical studies could not be performed in the last six months, on the basis of the in vitro and in vivo results, carnosinole seems to be a promising compound to mitigate and prevent the diabetic complications. Thus it is worth to the attention of the clinicians. Orv Hetil. 2019; 160(40): 1567–1573.


2003 ◽  
Vol 60 (3) ◽  
pp. 175-180 ◽  
Author(s):  
Vimolmas Lipipun ◽  
Masahiko Kurokawa ◽  
Rutt Suttisri ◽  
Pagorn Taweechotipatr ◽  
Pornpen Pramyothin ◽  
...  

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Aparna Palshetkar ◽  
Navin Pathare ◽  
Nutan Jadhav ◽  
Megha Pawar ◽  
Ashish Wadhwani ◽  
...  

2020 ◽  
Vol 219 ◽  
pp. 108011 ◽  
Author(s):  
Cheryl Sachdeva ◽  
Dinesh Mohanakrishnan ◽  
Sandeep Kumar ◽  
Naveen Kumar Kaushik

Author(s):  
Manuela Aragno ◽  
Raffaella Mastrocola

The rapid increase in metabolic diseases occurred in the last three decades in both industrialized and developing countries has been related to the rise in sugar-added foods and sweetened beverages consumption. An emerging topic in the pathogenesis of metabolic diseases related to modern nutrition is the role of Advanced Glycation Endproducts (AGEs). AGEs can be ingested with high temperature processed foods, but also endogenously formed as consequence of a high dietary sugars intake. Animal models of high sugars consumption, in particular fructose, have reported AGEs accumulation in different tissues in association with peripheral insulin resistance and lipid metabolism alterations. The in vitro observation that fructose is one of the most rapid and effective glycating agent when compared to other sugars has prompted the investigation of the in vivo fructose-induced glycation. In particular, the widespread employment of fructose as sweetener has been ascribed by many experimental and observational studies for the enhancement of lipogenesis and intracellular lipid deposition. Indeed, diet-derived AGEs have been demonstrated to interfere with many cell functions such as lipid synthesis, inflammation, antioxidant defences, and mitochondrial metabolism. Moreover, emerging evidences also in humans suggest that this impact of dietary AGEs on different signalling pathways can contribute to the onset of organ damage in liver, skeletal and cardiac muscle, and brain, affecting not only metabolic control, but global health. Indeed, the here reviewed most recent reports on the effects of high sugars consumption and diet-derived AGEs on human health suggest the need to limit the dietary sources of AGEs, including added sugars, to prevent the development of metabolic diseases and related comorbidities.


Sign in / Sign up

Export Citation Format

Share Document