Hypolipidemic Effect and Mechanism of Palmatine from Coptis chinensis in Hamsters Fed High-Fat diet

2015 ◽  
Vol 29 (5) ◽  
pp. 668-673 ◽  
Author(s):  
Na Ning ◽  
Kai He ◽  
Yanzhi Wang ◽  
Zongyao Zou ◽  
Hao Wu ◽  
...  
2016 ◽  
Vol 60 (11) ◽  
pp. 2493-2504 ◽  
Author(s):  
Lorraine S. Oliveira ◽  
Luana L. Souza ◽  
Aline F. P. Souza ◽  
Aline Cordeiro ◽  
George E. G. Kluck ◽  
...  

2018 ◽  
Vol 19 (12) ◽  
pp. 4023 ◽  
Author(s):  
Pengpeng Hua ◽  
Zhiying Yu ◽  
Yu Xiong ◽  
Bin Liu ◽  
Lina Zhao

Lipid metabolism disorder (LMD) is a public health issue. Spirulina platensis is a widely used natural weight-reducing agent and Spirulina platensis is a kind of protein source. In the present study, we aimed to evaluate the effect of Spirulina platensis protease hydrolyzate (SPPH) on the lipid metabolism and gut microbiota in high-fat diet (HFD)-fed rats. Our study showed that SPPH decreased the levels of triglyceride (TG), total cholesterol (TC), low-density-lipoprotein cholesterol (LDL-c), alanine transaminase (ALT), and aspartate transaminase (AST), but increased the level of high-density-lipoprotein cholesterol (HDL-c) in serum and liver. Moreover, SPPH had a hypolipidemic effect as indicated by the down-regulation of sterol regulatory element-binding transcription factor-1c (SREBP-1c), acetyl CoA carboxylase (ACC), SREBP-1c, and peroxisome proliferator-activated receptor-γ (PPARγ) and the up-regulation of adenosine 5’-monophosphate (AMP)-activated protein kinase (AMPK) and peroxisome proliferator-activated receptorα (PPARα) at the mRNA level in liver. SPPH treatment enriched the abundance of beneficial bacteria. In conclusion, our study showed that SPPH might be produce glucose metabolic benefits in rats with diet-induced LMD. The mechanisms underlying the beneficial effects of SPPH on the metabolism remain to be further investigated. Collectively, the above-mentioned findings illustrate that Spirulina platensis peptides have the potential to ameliorate lipid metabolic disorders, and our data provides evidence that SPPH might be used as an adjuvant therapy and functional food in obese and diabetic individuals.


2018 ◽  
Vol 7 (4) ◽  
pp. 252-259 ◽  
Author(s):  
Ayman Mohammed El-Anany ◽  
Rehab Farouk M. Ali

2019 ◽  
Vol 7 (11) ◽  
pp. 3751-3758
Author(s):  
Prosper Ngakou Takam ◽  
Fabrice Tonfack Djikeng ◽  
Dieudonné Kuate ◽  
Anne Pascale Nouemsi Kengne ◽  
Hermine Doungué Tsafack ◽  
...  

2017 ◽  
Vol 45 (05) ◽  
pp. 1033-1046 ◽  
Author(s):  
Su-Min Lim ◽  
Hyun-Sik Choi ◽  
Dong-Hyun Kim

Anemarrhena asphodeloides (AA, family Liliaceae) inhibits macrophage activation by inhibiting IRAK1 phosphorylation and helper T (Th)17 differentiation. Coptis chinensis (CC, family Ranunculaceae), which inhibits macrophage activation by inhibiting the binding of lipopolysaccharide (LPS) on toll-like receptor 4 and inducing regulatory T (Treg) cell differentiation. The mixture of AA and CC (AC-mix) synergistically attenuates 2,4,6-trinitrobenzenesulfonic acid or dextran sulfate sodium-induced colitis in mice by inhibiting NF-[Formula: see text]B activation and regulating Th17/Treg balance. In the present study, we examined the effect of AC-mix on high-fat diet (HFD)-induced colitis in mice, which induced NF-[Formula: see text]B activation and disturbed Th17/Treg balance. Long-term feeding of HFD in mice caused colitis, including increased macroscopic score and myeloperoxidase activity. Oral administration of AC-mix (20[Formula: see text]mg/kg) suppressed HFD-induced myeloperoxidase activity by 68% ([Formula: see text]). Furthermore, treatment with the AC-mix (20[Formula: see text]mg/kg) inhibited HFD-induced activation of NF-[Formula: see text]B and expression of cyclooxygenase-2, inducible NO synthase, interleukin (IL)-17, and tumor necrosis factor-alpha but increased HFD- suppressed expression of IL-10. AC-mix suppressed HFD-induced differentiation into Th17 cells by 46% ([Formula: see text]) and increased HFD-induced differentiation into regulatory T cells 2.2-fold ([Formula: see text]). AC-mix also suppressed the HFD-induced Proteobacteria/Bacteroidetes ratio on the gut microbiota by 48% ([Formula: see text]). These findings suggest that AC-mix can ameliorate HFD-induced colitis by regulating innate and adaptive immunities and correcting the disturbance of gut microbiota.


2016 ◽  
Vol 31 (3) ◽  
pp. 1085-1096 ◽  
Author(s):  
Siyu Chen ◽  
Xiaoan Wen ◽  
Wenxiang Zhang ◽  
Chen Wang ◽  
Jun Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document