Ribosomal protein L5 mediated inhibition of c‐Myc is critically involved in sanggenon G induced apoptosis in non‐small lung cancer cells

2020 ◽  
Author(s):  
Ji Eon Park ◽  
Ji Hoon Jung ◽  
Hyo‐Jung Lee ◽  
Deok Yong Sim ◽  
Eunji Im ◽  
...  
2020 ◽  
Vol 20 (5) ◽  
pp. 372-381
Author(s):  
Yoshiaki Sato ◽  
Hironori Yoshino ◽  
Eichi Tsuruga ◽  
Ikuo Kashiwakura

Background: Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) play key roles in the antiviral response, but recent works show that RLR activation elicits anticancer activity as well, including apoptosis. Previously, we demonstrated that the anticancer activity of the RLR agonist Poly(I:C)-HMW/LyoVec™ [Poly(I:C)-HMW] against human lung cancer cells was enhanced by cotreatment with ionizing radiation (IR). In addition, cotreatment with Poly(I:C)-HMW and IR induced apoptosis in a Fas-independent manner, and increased Fas expression on the cell surface. Objective: The current study investigated the resultant hypothesis that Fas ligand (FasL) may enhance apoptosis in lung cancer cells cotreated with Poly(I:C)-HMW+IR. Methods: FasL was added into culture medium at 24 h following cotreatment with Poly(I:C)- HMW+IR, after upregulation of cell surface Fas expression on human lung cancer cells A549 and H1299 have already been discussed. Results: FasL enhanced the apoptosis of A549 and H1299 cells treated with Poly(I:C)-HMW+IR. Similarly, IR alone - and not Poly(I:C)-HMW - resulted in the upregulation of cell surface Fas expression followed by a high response to FasL-induced apoptosis, thus suggesting that the high sensitivity of cells treated with Poly(I:C)-HMW+IR to FasL-induced apoptosis resulted from the cellular response to IR. Finally, knockdown of Fas by siRNA confirmed that the high response of treated cells to FasL-induced apoptosis is dependent on Fas expression. Conclusion: In summary, the present study indicates that upregulated Fas expression following cotreatment with Poly(I:C)-HMW and IR is responsive to FasL-induced apoptosis, and a combination of RLR agonist, IR, and FasL could be a potential promising cancer therapy.


2000 ◽  
Vol 273 (1) ◽  
pp. 140-146 ◽  
Author(s):  
Jae-Yeol Kim ◽  
Seunghee Lee ◽  
Bin Hwangbo ◽  
Choon-Taek Lee ◽  
Young Whan Kim ◽  
...  

2018 ◽  
Vol 19 (10) ◽  
pp. 3187 ◽  
Author(s):  
Eun Lim ◽  
Yu Yoon ◽  
Jeonghoon Heo ◽  
Tae Lee ◽  
Young-Ho Kim

Ciprofloxacin (CIP) is a potent antimicrobial agent with multiple effects on host cells and tissues. Previous studies have highlighted their proapoptotic effect on human cancer cells. The current study showed that subtoxic doses of CIP effectively sensitized multiple cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Although TRAIL alone mediated the partial proteolytic processing of procaspase-3 in lung cancer cells, co-treatment with CIP and TRAIL efficiently restored the complete activation of caspases. We found that treatment of lung cancer with CIP significantly upregulated the expression and protein stability of death receptor (DR) 5. These effects were mediated through the regulation of transcription factor CCAT enhancer-binding protein homologous protein (CHOP) since the silencing of these signaling molecules abrogated the effect of CIP. Taken together, these results indicated that the upregulation of death receptor expression and protein stability by CIP contributed to the restoration of TRAIL-sensitivity in lung cancer cells.


2012 ◽  
Vol 420 (2) ◽  
pp. 288-292 ◽  
Author(s):  
Woo-Kwang Jeon ◽  
Hey-Young Hong ◽  
Won-Chan Seo ◽  
Kyu-Hyoung Lim ◽  
Hui-Young Lee ◽  
...  

Author(s):  
K.M.A. Zinnah ◽  
Jae-Won Seol ◽  
Sang-Youel Park

Autophagy, an alternative cell death mechanism, is also termed programmed cell death type II. Autophagy in cancer treatment needs to be regulated. In our study, autophagy inhibition by desipramine or the autophagy inhibitor chloroquine (CQ) enhanced tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor-2 [death receptor (DR5)] expression and subsequently TRAIL-induced apoptosis in TRAIL-resistant A549 lung cancer cells. Genetic inhibition of DR5 substantially reduced desipramine-enhanced TRAIL-mediated apoptosis, proving that DR5 was required to increase TRAIL sensitivity in TRAIL-resistant cancer cells. Desipramine treatment upregulated p62 expression and promoted conversion of light chain 3 (LC3)-I to its lipid-conjugated form, LC3-II, indicating that autophagy inhibition occurred at the final stages of autophagic flux. Transmission electron microscopy analysis showed the presence of condensed autophagosomes, which resulted from the late stages of autophagy inhibition by desipramine. TRAIL, in combination with desipramine or CQ, augmented the expression of apoptosis-related proteins cleaved caspase-8 and cleaved caspase-3. Our results contributed to the understanding of the mechanism underlying the synergistic anti-cancer effect of desipramine and TRAIL and presented a novel mechanism of DR5 upregulation. These findings demonstrated that autophagic flux inhibition by desipramine potentiated TRAIL-induced apoptosis, suggesting that appropriate regulation of autophagy is required for sensitizing TRAIL-resistant cancer cells to TRAIL-mediated apoptosis.


2006 ◽  
Vol 118 (7) ◽  
pp. 1692-1698 ◽  
Author(s):  
Cheol Hyeon Kim ◽  
Jung Sun Yoo ◽  
Choon-Taek Lee ◽  
Young Whan Kim ◽  
Sung Koo Han ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document