Evaluation of low-cloud climate feedback through single-column model equilibrium states

2014 ◽  
Vol 141 (688) ◽  
pp. 819-832 ◽  
Author(s):  
S. Dal Gesso ◽  
A. P. Siebesma ◽  
S. R. de Roode
2019 ◽  
Vol 12 (2) ◽  
pp. 699-722 ◽  
Author(s):  
Hyun-Chae Jung ◽  
Byung-Kwon Moon ◽  
Jieun Wie ◽  
Hyei-Sun Park ◽  
Johan Lee ◽  
...  

Abstract. Recently, Earth system models (ESMs) have begun to consider the marine ecosystem to reduce errors in climate simulations. However, many models are unable to fully represent the ocean-biology-induced climate feedback, which is due in part to significant bias in the simulated biogeochemical properties. Therefore, we developed the Generic Ocean Turbulence Model–Tracers of Phytoplankton with Allometric Zooplankton (GOTM–TOPAZ), a single-column ocean biogeochemistry model that can be used to improve ocean biogeochemical processes in ESMs. This model was developed by combining GOTM, a single-column model that can simulate the physical environment of the ocean, and TOPAZ, a biogeochemical module. Here, the original form of TOPAZ has been modified and modularized to allow easy coupling with other physical ocean models. To demonstrate interactions between ocean physics and biogeochemical processes, the model was designed to allow ocean temperature to change due to absorption of visible light by chlorophyll in phytoplankton. We also added a module to reproduce upwelling and the air–sea gas transfer process for oxygen and carbon dioxide, which are of particular importance for marine ecosystems. The simulated variables (e.g., chlorophyll, oxygen, nitrogen, phosphorus, silicon) of GOTM–TOPAZ were evaluated by comparison against observations. The temporal variability in the observed upper-ocean (0–20 m) chlorophyll is well captured by the GOTM–TOPAZ with a correlation coefficient of 0.53 at point 107 in the Sea of Japan. The surface correlation coefficients among GOTM–TOPAZ oxygen, nitrogen, phosphorus, and silicon are 0.47, 0.31, 0.16, and 0.19, respectively. We compared the GOTM–TOPAZ simulations with those from MOM–TOPAZ and found that GOTM–TOPAZ showed relatively lower correlations, which is most likely due to the limitations of the single-column model. Results also indicate that source–sink terms may contribute to the biases in the surface layer (<60 m), while initial values are important for realistic simulations in the deep sea (>250 m). Despite this limitation, we argue that our GOTM–TOPAZ model is a good starting point for further investigation of key biogeochemical processes and is also useful to couple complex biogeochemical processes with various oceanic global circulation models.


2008 ◽  
Vol 21 (18) ◽  
pp. 4859-4878 ◽  
Author(s):  
Minghua Zhang ◽  
Christopher Bretherton

Abstract This study investigates the physical mechanism of low cloud feedback in the Community Atmospheric Model, version 3 (CAM3) through idealized single-column model (SCM) experiments over the subtropical eastern oceans. Negative cloud feedback is simulated from stratus and stratocumulus that is consistent with previous diagnostics of cloud feedbacks in CAM3 and its predecessor versions. The feedback occurs through the interaction of a suite of parameterized processes rather than from any single process. It is caused by the larger amount of in-cloud liquid water in stratus clouds from convective sources, and longer lifetimes of these clouds in a warmer climate through their interaction with boundary layer turbulence. Thermodynamic effects are found to dominate the negative cloud feedback in the model. The dynamic effect of weaker subsidence in a warmer climate also contributes to the negative cloud feedback, but with about one-quarter of the magnitude of the thermodynamic effect, owing to increased low-level convection in a warmer climate.


2015 ◽  
Vol 32 (6) ◽  
pp. 1144-1162 ◽  
Author(s):  
Adrian Sescu ◽  
Charles Meneveau

AbstractEffects of atmospheric thermal stratification on the asymptotic behavior of very large wind farms are studied using large-eddy simulations (LES) and a single-column model for vertical distributions of horizontally averaged field variables. To facilitate comparisons between LES and column modeling based on Monin–Obukhov similarity theory, the LES are performed under idealized conditions of statistical stationarity in time and fully developed conditions in space. A suite of simulations are performed for different thermal stratification levels and the results are used to evaluate horizontally averaged vertical profiles of velocity, potential temperature, vertical turbulent momentum, and heat flux. Both LES and the model show that the stratification significantly affects the atmospheric boundary layer structure, its height, and the surface fluxes. However, the effects of the wind farm on surface heat fluxes are found to be relatively small in both LES and the single-column model. The surface fluxes are the result of two opposing trends: an increase of mixing in wakes and a decrease in mixing in the region below the turbines due to reduced momentum fluxes there for neutral and unstable cases, or relatively unchanged shear stresses below the turbines in the stable cases. For the considered cases, the balance of these trends yields a slight increase in surface flux magnitude for the stable and near-neutral unstable cases, and a very small decrease in flux magnitude for the strongly unstable cases. Moreover, thermal stratification is found to have a negligible effect on the roughness scale as deduced from the single-column model, consistent with the expectations of separation of scale.


Sign in / Sign up

Export Citation Format

Share Document