Mechanisms of Low Cloud–Climate Feedback in Idealized Single-Column Simulations with the Community Atmospheric Model, Version 3 (CAM3)

2008 ◽  
Vol 21 (18) ◽  
pp. 4859-4878 ◽  
Author(s):  
Minghua Zhang ◽  
Christopher Bretherton

Abstract This study investigates the physical mechanism of low cloud feedback in the Community Atmospheric Model, version 3 (CAM3) through idealized single-column model (SCM) experiments over the subtropical eastern oceans. Negative cloud feedback is simulated from stratus and stratocumulus that is consistent with previous diagnostics of cloud feedbacks in CAM3 and its predecessor versions. The feedback occurs through the interaction of a suite of parameterized processes rather than from any single process. It is caused by the larger amount of in-cloud liquid water in stratus clouds from convective sources, and longer lifetimes of these clouds in a warmer climate through their interaction with boundary layer turbulence. Thermodynamic effects are found to dominate the negative cloud feedback in the model. The dynamic effect of weaker subsidence in a warmer climate also contributes to the negative cloud feedback, but with about one-quarter of the magnitude of the thermodynamic effect, owing to increased low-level convection in a warmer climate.

2008 ◽  
Vol 21 (10) ◽  
pp. 2269-2282 ◽  
Author(s):  
Karen M. Shell ◽  
Jeffrey T. Kiehl ◽  
Christine A. Shields

Abstract Climate models differ in their responses to imposed forcings, such as increased greenhouse gas concentrations, due to different climate feedback strengths. Feedbacks in NCAR’s Community Atmospheric Model (CAM) are separated into two components: the change in climate components in response to an imposed forcing and the “radiative kernel,” the effect that climate changes have on the top-of-the-atmosphere (TOA) radiative budget. This technique’s usefulness depends on the linearity of the feedback processes. For the case of CO2 doubling, the sum of the effects of water vapor, temperature, and surface albedo changes on the TOA clear-sky flux is similar to the clear-sky flux changes directly calculated by CAM. When monthly averages are used rather than values from every time step, the global-average TOA shortwave change is underestimated by a quarter, partially as a result of intramonth correlations of surface albedo with the radiative kernel. The TOA longwave flux changes do not depend on the averaging period. The longwave zonal averages are within 10% of the model-calculated values, while the global average differs by only 2%. Cloud radiative forcing (ΔCRF) is often used as a diagnostic of cloud feedback strength. The net effect of the water vapor, temperature, and surface albedo changes on ΔCRF is −1.6 W m−2, based on the kernel technique, while the total ΔCRF from CAM is −1.3 W m−2, indicating these components contribute significantly to ΔCRF and make it more negative. Assuming linearity of the ΔCRF contributions, these results indicate that the net cloud feedback in CAM is positive.


2018 ◽  
Vol 31 (2) ◽  
pp. 641-654 ◽  
Author(s):  
Timothy Andrews ◽  
Mark J. Webb

An atmospheric general circulation model (AGCM) is forced with patterns of observed sea surface temperature (SST) change and those output from atmosphere–ocean GCM (AOGCM) climate change simulations to demonstrate a strong dependence of climate feedback on the spatial structure of surface temperature change. Cloud and lapse rate feedbacks are found to vary the most, depending strongly on the pattern of tropical Pacific SST change. When warming is focused in the southeast tropical Pacific—a region of climatological subsidence and extensive marine low cloud cover—warming reduces the lower-tropospheric stability (LTS) and low cloud cover but is largely trapped under an inversion and hence has little remote effect. The net result is a relatively weak negative lapse rate feedback and a large positive cloud feedback. In contrast, when warming is weak in the southeast tropical Pacific and enhanced in the west tropical Pacific—a strong convective region—warming is efficiently transported throughout the free troposphere. The increased atmospheric stability results in a strong negative lapse rate feedback and increases the LTS in low cloud regions, resulting in a low cloud feedback of weak magnitude. These mechanisms help explain why climate feedback and sensitivity change on multidecadal time scales in AOGCM abrupt4xCO2 simulations and are different from those seen in AGCM experiments forced with observed historical SST changes. From the physical understanding developed here, one should expect unusually negative radiative feedbacks and low effective climate sensitivities to be diagnosed from real-world variations in radiative fluxes and temperature over decades in which the eastern Pacific has lacked warming.


Author(s):  
Timothy A. Myers ◽  
Ryan C. Scott ◽  
Mark D. Zelinka ◽  
Stephen A. Klein ◽  
Joel R. Norris ◽  
...  

2014 ◽  
Vol 7 (2) ◽  
pp. 2249-2291 ◽  
Author(s):  
J. K. Fletcher ◽  
C. S. Bretherton ◽  
H. Xiao ◽  
R. Sun ◽  
J. Han

Abstract. The current operational version of National Centers for Environmental Prediction (NCEP) Global Forecasting System (GFS) shows significant low cloud bias. These biases also appear in the Coupled Forecast System (CFS), which is developed from the GFS. These low cloud biases degrade seasonal and longer climate forecasts, particularly of shortwave cloud radiative forcing, and affect predicted sea-surface temperature. Reducing this bias in the GFS will aid the development of future CFS versions and contributes to NCEP's goal of unified weather and climate modelling. Changes are made to the shallow convection and planetary boundary layer parametrisations to make them more consistent with current knowledge of these processes and to reduce the low cloud bias. These changes are tested in a single-column version of GFS and in global simulations with GFS coupled to a dynamical ocean model. In the single column model, we focus on changing parameters that set the following: the strength of shallow cumulus lateral entrainment, the conversion of updraught liquid water to precipitation and grid-scale condensate, shallow cumulus cloud top, and the effect of shallow convection in stratocumulus environments. Results show that these changes improve the single-column simulations when compared to large eddy simulations, in particular through decreasing the precipitation efficiency of boundary layer clouds. These changes, combined with a few other model improvements, also reduce boundary layer cloud and albedo biases in global coupled simulations.


2018 ◽  
Vol 45 (9) ◽  
pp. 4438-4445 ◽  
Author(s):  
Tianle Yuan ◽  
Lazaros Oreopoulos ◽  
Steven E. Platnick ◽  
Kerry Meyer

2018 ◽  
Vol 10 (11) ◽  
pp. 2844-2864 ◽  
Author(s):  
Haipeng Zhang ◽  
Minghuai Wang ◽  
Zhun Guo ◽  
Chen Zhou ◽  
Tianjun Zhou ◽  
...  

2019 ◽  
Vol 32 (9) ◽  
pp. 2497-2516 ◽  
Author(s):  
Ehsan Erfani ◽  
Natalie J. Burls

Abstract Variability in the strength of low-cloud feedbacks across climate models is the primary contributor to the spread in their estimates of equilibrium climate sensitivity (ECS). This raises the question: What are the regional implications for key features of tropical climate of globally weak versus strong low-cloud feedbacks in response to greenhouse gas–induced warming? To address this question and formalize our understanding of cloud controls on tropical climate, we perform a suite of idealized fully coupled and slab-ocean climate simulations across which we systematically scale the strength of the low-cloud-cover feedback under abrupt 2 × CO2 forcing within a single model, thereby isolating the impact of low-cloud feedback strength. The feedback strength is varied by modifying the stratus cloud fraction so that it is a function of not only local conditions but also global temperature in a series of abrupt 2 × CO2 sensitivity experiments. The unperturbed decrease in low cloud cover (LCC) under 2 × CO2 is greatest in the mid- and high-latitude oceans, and the subtropical eastern Pacific and Atlantic, a pattern that is magnified as the feedback strength is scaled. Consequently, sea surface temperature (SST) increases more in these regions as well as the Pacific cold tongue. As the strength of the low-cloud feedback increases this results in not only increased ECS, but also an enhanced reduction of the large-scale zonal and meridional SST gradients (structural climate sensitivity), with implications for the atmospheric Hadley and Walker circulations, as well as the hydrological cycle. The relevance of our results to simulating past warm climate is also discussed.


Sign in / Sign up

Export Citation Format

Share Document