Influence of tropical South Atlantic sea-surface temperatures on the Indian summer monsoon in CMIP5 models

2017 ◽  
Vol 143 (704) ◽  
pp. 1351-1363 ◽  
Author(s):  
Fred Kucharski ◽  
Manish K. Joshi
The Holocene ◽  
2011 ◽  
Vol 22 (7) ◽  
pp. 809-817 ◽  
Author(s):  
Masaki Sano ◽  
R Ramesh ◽  
MS Sheshshayee ◽  
R Sukumar

A tree-ring δ18O chronology of Abies spectabilis from the Nepal Himalaya was established to study hydroclimate in the summer monsoon season over the past 223 years (ad 1778–2000). Response function analysis with ambient climatic records revealed that tree-ring δ18O was primarily controlled by the amount of precipitation and relative humidity during the monsoon season (June–September). Since tree-ring δ18O was simultaneously correlated with temperature, drought history in the monsoon season was reconstructed by calibrating against the Palmer Drought Severity Index (PDSI). Our reconstruction that accounts for 33.7% of the PDSI variance shows a decreasing trend of precipitation/moisture over the past two centuries, and reduction of monsoon activity can be found across different proxy records from the Himalaya and Tibet. Spatial correlation analysis with global sea surface temperatures suggests that the tropical oceans play a role in modulating hydroclimate in the Nepal Himalaya. Although the dynamic mechanisms of the weakening trend of monsoon intensity still remain to be analyzed, rising sea surface temperatures over the tropical Pacific and Indian Ocean could be responsible for the reduction of summer monsoon.


2012 ◽  
Vol 25 (18) ◽  
pp. 6375-6382 ◽  
Author(s):  
Jennifer L. Catto ◽  
Neville Nicholls ◽  
Christian Jakob

Abstract Aspects of the climate of Australia are linked to interannual variability of the sea surface temperatures (SSTs) to the north of the country. SST anomalies in this region have been shown to exhibit strong, seasonally varying links to ENSO and tropical Pacific SSTs. Previously, the models participating in phase 3 of the Coupled Model Intercomparison Project (CMIP3) have been evaluated and found to vary in their abilities to represent both the seasonal cycle of correlations between the Niño-3.4 and north Australian SSTs and the evolution of SSTs during composite El Niño and La Niña events. In this study, the new suite of models participating in the CMIP5 is evaluated using the same method. In the multimodel mean, the representation of the links is slightly improved, but generally the models do not capture the strength of the negative correlations during the second half of the year. The models also still struggle to capture the SST evolution in the north Australian region during El Niño and La Niña events.


2011 ◽  
Vol 38 (22) ◽  
pp. n/a-n/a ◽  
Author(s):  
Sang-Ik Shin ◽  
Prashant D. Sardeshmukh ◽  
Sang-Wook Yeh

Sign in / Sign up

Export Citation Format

Share Document