Satellite observation of Brazil Current inshore thermal front in the SW South Atlantic: Space/time variability and sea surface temperatures

2009 ◽  
Vol 29 (17) ◽  
pp. 2061-2068 ◽  
Author(s):  
João A. Lorenzzetti ◽  
Jose L. Stech ◽  
Wilson L. Mello Filho ◽  
Arcilan T. Assireu
2008 ◽  
Vol 21 (2) ◽  
pp. 214-229 ◽  
Author(s):  
Ingo Richter ◽  
Carlos R. Mechoso ◽  
Andrew W. Robertson

Abstract The South Atlantic anticyclone is a major feature of the austral winter climatology. An atmospheric general circulation model (AGCM) is used to study the dynamics of the South Atlantic anticyclone by means of control simulations and experiments to investigate sensitivity to prescribed orography, sea surface temperatures, and soil wetness. The South Atlantic anticyclone in the first control simulation is unrealistically zonally elongated and centered too far west—errors typical of coupled ocean–atmosphere GCMs. Results of the sensitivity experiments suggest that these deficiencies are associated with another family of systematic model errors: the overprediction of convection over the tropical land surfaces, particularly over eastern tropical Africa and India, and the concurrent large-scale westward shift in the divergence center at upper levels and the convergence center at lower levels. The results also confirm the important role of South American and African orography in localizing the South Atlantic anticyclone over the ocean. Other factors, however, like the regional zonal gradients of sea surface temperatures, are found to have only a minor impact on the anticyclone. To further substantiate these findings, the wintertime anticyclone is examined using a revised version of the atmospheric GCM. Improvements are found in both the anticyclone as well as the Asia–African summer monsoon circulations. The results demonstrate the existence of links between intensity and structure of the wintertime South Atlantic anticyclone and the major summer monsoons in the Northern Hemisphere.


1979 ◽  
Vol 12 (3) ◽  
pp. 381-395 ◽  
Author(s):  
Joseph J. Morley

A quantitative analysis of radiolarian species in 57 deep-sea surface sediment samples from the South Atlantic Ocean produced four geographically distinct assemblages (tropical, polar, gyre margin, and subtropical). The distributions of these assemblages or factors coincide with present-day patterns of sea-surface temperatures or water masses.These four assemblages were used to construct a transfer function relating radiolarian distribution in the surface sediments to present-day winter and summer temperatures using standard regression techniques. As a test of the quality of this transfer function, temperatures were estimated on surface sediment samples from the eastern South Pacific. The temperatures produced by the transfer function compared favorably with the observed (present-day) winter and summer sea-surface temperatures at these sites.


Sign in / Sign up

Export Citation Format

Share Document