scholarly journals Characterizing cancer‐associated myosteatosis: anatomic distribution and cancer‐specific variability of low radiodensity muscle

2021 ◽  
Author(s):  
Victoria Armstrong ◽  
Cynthia Stretch ◽  
Liam Fitzgerald ◽  
Aquila Gopaul ◽  
Greg McKinnon ◽  
...  
2006 ◽  
Vol 175 (4S) ◽  
pp. 88-88
Author(s):  
Cheryn Song ◽  
Taejin Kang ◽  
Gil Hyun Shin ◽  
Donglk Shin ◽  
Jae Y. Ro ◽  
...  

Medicina ◽  
2021 ◽  
Vol 57 (3) ◽  
pp. 205
Author(s):  
Nicola Tarantino ◽  
Domenico G. Della Rocca ◽  
Nicole S. De Leon De La Cruz ◽  
Eric D. Manheimer ◽  
Michele Magnocavallo ◽  
...  

A recent surveillance analysis indicates that cardiac arrest/death occurs in ≈1:50,000 professional or semi-professional athletes, and the most common cause is attributable to life-threatening ventricular arrhythmias (VAs). It is critically important to diagnose any inherited/acquired cardiac disease, including coronary artery disease, since it frequently represents the arrhythmogenic substrate in a substantial part of the athletes presenting with major VAs. New insights indicate that athletes develop a specific electro-anatomical remodeling, with peculiar anatomic distribution and VAs patterns. However, because of the scarcity of clinical data concerning the natural history of VAs in sports performers, there are no dedicated recommendations for VA ablation. The treatment remains at the mercy of several individual factors, including the type of VA, the athlete’s age, and the operator’s expertise. With the present review, we aimed to illustrate the prevalence, electrocardiographic (ECG) features, and imaging correlations of the most common VAs in athletes, focusing on etiology, outcomes, and sports eligibility after catheter ablation.


1993 ◽  
Vol 264 (6) ◽  
pp. H1836-H1846 ◽  
Author(s):  
D. R. Kostreva ◽  
S. P. Pontus

Pericardial mechanoreceptors with afferents in the phrenic nerves were studied in anesthetized dogs. The specific aims determined 1) if pericardial receptors with phrenic afferents exist in the dog; 2) the stimuli needed to activate these receptors; 3) the anatomic distribution of these pericardial receptors; and 4) which pericardial layer contains the receptors. Afferent activity was recorded from the phrenic nerves while the pericardium was probed. In 15 of 18 animals, pericardial receptors were found on the right side. In 12 of 18 animals pericardial receptors were located on the left side. Most of the mechanoreceptors were found in a band that paralleled the pericardiophrenic attachment, in the fibrous layer of the pericardium, overlying the atria and atrioventricular grooves. Some receptors had a cardiac rhythm, whereas others were stimulated by the inflating lung. None of the receptors were chemosensitive to capsaicin, bradykinin, or saline. This study is the first to demonstrate that the pericardium of the dog contains mechanosensitive receptors which are innervated by the phrenic nerve.


Neurosurgery ◽  
2008 ◽  
Vol 63 (3) ◽  
pp. 487-497 ◽  
Author(s):  
Timothy H. Lucas ◽  
Daniel L. Drane ◽  
Carl B. Dodrill ◽  
George A. Ojemann

ABSTRACT OBJECTIVE The purpose of this investigation was to determine whether clinical speech deficits after brain injury are associated with functional speech reorganization. METHODS Across an 18-year interval, 11 patients with mild-to-moderate speech deficits underwent language mapping as part of their treatment for intractable epilepsy. These “aphasics” were compared with 14 matched “control” patients with normal speech who also were undergoing epilepsy surgery. Neuroanatomic data were compared with quantitative language profiles and clinical variables. RESULTS Cortical lesions were evident near speech areas in all aphasia cases. As expected, aphasic and control patients were distinguished by quantitative language profiles. The groups were further distinguished by the anatomic distribution of their speech sites. A significantly greater proportion of frontal speech sites was found in patients with previous brain injury, consistent with frontal site recruitment. The degree of frontal recruitment varied as a function of patient age at the time of initial brain injury; earlier injuries were associated with greater recruitment. The overall number of speech sites remained the same after injury. Significant associations were found between the number of the speech sites, naming fluency, and the lesion proximity in the temporal lobe. CONCLUSION Language maps in aphasics demonstrated evidence for age-dependent functional recruitment in the frontal, but not temporal, lobe. The proximity of cortical lesions to temporal speech sites predicted the overall extent of temporal lobe speech representation and performance on naming fluency. These findings have implications for neurosurgical planning in patients with preoperative speech deficits.


2017 ◽  
Vol 52 (7) ◽  
pp. 460-464 ◽  
Author(s):  
Michel D Crema ◽  
Mohamed Jarraya ◽  
Lars Engebretsen ◽  
Frank W Roemer ◽  
Daichi Hayashi ◽  
...  

BackgroundAcute muscle injuries in elite athletes are responsible for a large portion of time loss injuries.AimTo describe the frequency, the anatomic distribution, and severity of imaging-detected acute muscle injuries among athletes who competed in the Rio de Janeiro 2016 Summer Olympics.MethodsWe recorded all sports injuries reported by the National Olympic Committee medical teams and the Organising Committee medical staff during the 2016 Summer Olympics. Imaging of acute muscle injuries was performed at the IOC’s polyclinic within the Olympic Village using ultrasound and 3.0 T and 1.5 T MRI scanners. The assessment of images was performed centrally by three musculoskeletal radiologists. The distribution of injuries by anatomic location and sports discipline and the severity of injuries were recorded.ResultsIn total, 11 274 athletes from 207 teams were included. A total of 1101 injuries were reported. Central review of radiological images revealed 81 acute muscle injuries in 77 athletes (66% male, mean age: 25.4 years, range 18–38 years). Athletics (track and field) athletes were the most commonly affected (n=39, 48%), followed by football players (n=9, 11%). The majority of injuries affected muscles from lower limbs (n=68, 84%), with the hamstring being the most commonly involved. Most injuries were grade 2 injuries according to the Peetrons classification (n=44, 54%), and we found 18 injuries exhibiting intramuscular tendon involvement on MRI.ConclusionImaging-detected acute muscle injuries during the 2016 Summer Olympics affected mainly thigh muscles in athletics disciplines.


2007 ◽  
Vol 16 (10) ◽  
pp. 2136-2143 ◽  
Author(s):  
Athena T. Dodd ◽  
Joseph Morelli ◽  
Stefan T. Mokrohisky ◽  
Nancy Asdigian ◽  
Tim E. Byers ◽  
...  

Stroke ◽  
2021 ◽  
Author(s):  
Valerie Vogels ◽  
Ruben Dammers ◽  
Martine van Bilsen ◽  
Victor Volovici

The anatomic distribution of the deep cerebral perforators is considered either a given or subject to enormous variability. Most published overviews on this topic only report findings from a limited number of anatomic dissections, and no attempt has been made to date to provide a comprehensive overview of all published data. A comprehensive literature search was performed on MEDLINE, Embase, and Google Scholar with the help of an information specialist. Three types of studies were included: (1) articles that described the anatomy and distribution territories of perforator groups arising from the arteries of the circle of Willis; (2) studies that evaluated the anatomy of the deep cerebral perforators using imaging techniques; and (3) studies that evaluated either microsurgically or radiologically confirmed perforator occlusion and reported the (magnetic resonance imaging–confirmed) distribution territory of the infarction together with a description of the clinical symptoms associated as a result of the infarction. A total of 2715 articles were screened and 53 were included. Of these, 40 dealt with the anatomic and imaging anatomy of perforator groups (37 reported results of dissections and 3 results of imaging studies), with a total of 2421 hemispheres investigated. Another 13 articles with 680 patients were included that evaluated perforator infarction territories. The deep cerebral perforator distribution shows large variability with poor concordance rates among reported studies, with the exception of the posterior communicating and anterior choroidal artery perforators. Despite the assumption that cerebral perforator anatomy is a given, studies show large variability in the anatomic distribution of various perforator groups. Perforator anatomy and relationships between perforator groups, as well as potential collateral circulation in these territories should be prioritized as a research topic in cerebrovascular disease in the near future.


Sign in / Sign up

Export Citation Format

Share Document