Prescribed time tracking control of constrained Euler–Lagrange systems: An adaptive proportional–integral solution

Author(s):  
Qian Cui ◽  
Hongwei Cao ◽  
Yujuan Wang ◽  
Yongduan Song
Author(s):  
Tsung-Chih Lin ◽  
Yu-Chen Lin ◽  
Majid Moradi Zirkohi ◽  
Hsi-Chun Huang

In this paper, a novel direct adaptive fuzzy moving sliding mode proportional integral (PI) tracking control of a three-dimensional (3D) overhead crane which is modeled by five highly nonlinear second-order ordinary differential equations is proposed. The fast and robust position regulation and antiswing control can be achieved based on the proposed approach. Due to universal approximation theorem, fuzzy control provides nonlinear controller, i.e., fuzzy logic controllers, to perform the unknown nonlinear control actions. Simultaneously, in order to achieve fast and robust regulation and to enhance robustness in the presence of disturbance and parameter variations, moving sliding mode control (SMC) is introduced to tradeoff between reaching phase and sliding phase. Hence, the sliding surface is moved by changing the magnitude of the slope by adaptive law and varying the intercept by tuning algorithm. Simulations performed using a scaled 3D mathematical model of the crane confirm that the proposed control scheme can keep the horizontal position of the payload invariable and suppress the swing of the payload effectively during the hoisting or lowing process.


2021 ◽  
Vol 410 ◽  
pp. 126467
Author(s):  
M. Vijayakumar ◽  
R. Sakthivel ◽  
Ardashir Mohammadzadeh ◽  
S.A. Karthick ◽  
S. Marshal Anthoni

2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Neha Kapoor ◽  
Jyoti Ohri

Highly precise tracking of a robotic manipulator in presence of uncertainties like noise, disturbances, and friction has been addressed in this particular paper. An integrated proportional derivative and support vector machine (SVMPD) controller has been proposed for manipulator tracking. To illustrate the efficiency of the proposed controller, simulations have been done on a 2-DOF manipulator system. Performance of the proposed controller has been checked and verified with respect to to a simple PID controller and the radial bias neural network proportional integral derivative (RBNNPD) controller. It has been proved that the proposed controller can achieve better tracking performance as compared to other controllers as the range of errors is less and the time taken by the controller has reduced up to 14 times as compared to RBNN.


Author(s):  
Mohammad Reza Gharib ◽  
Ali Koochi ◽  
Mojtaba Ghorbani

Position controlling with less overshoot and control effort is a fundamental issue in the design and application of micro-actuators such as micro-positioner. Also, tracking a considered path is very crucial for some particular applications of micro-actuators such as surgeon robots. Herein, a proportional–integral–derivative controller is designed using a feedback linearization technique for path tracking control of a cantilever electromechanical micro-positioner. The micro-positioner is simulated based on a 1-degree-of-freedom lumped-parameter model. Three different paths are considered, and the capability of the designed controller on the path tracking with lower error and control effort is investigated. The obtained results demonstrate the efficiency of the designed proportional–integral–derivative controller not only for reducing the tracking error but also for decreasing the control effort.


2018 ◽  
Vol 7 (3.28) ◽  
pp. 111
Author(s):  
Rozilawati Mohd Nor ◽  
Sahazati Md Rozali ◽  
Chong Shin Horng

A practical control scheme is proposed for a one mass rotary system. It was written to demonstrate the controller performance towards positioning and tracking control. For this system, the Nominal Characteristic Trajectory Following (NCTF) controller is proposed and improved. The objective of NCTF controller is to make the object motion to follow the NCT and ends at it origin. Generally, the NCTF controller consists of a Nominal Characteristic Trajectory (NCT) obtained from open loop response and Proportional Integral (PI) compensator. The CM-NCTF controller is proposed for evaluating the motion performance and compare with the conventional NCTF controller. For positioning control, both NCTF controllers demonstrate almost identical positioning performance. However, for tracking control, CM-NCTF controller demonstrates better tracking performance than the conventional NCTF controller with the smallest motion error presented. Besides, the robustness of the CM-NCTF controller to the variation load is examined. 


2021 ◽  
Vol 33 (9) ◽  
pp. 3333
Author(s):  
Feijie Zheng ◽  
Chi-Hsin Yang ◽  
Gao Hao ◽  
Kun-Chieh Wang ◽  
Hai-Lian Hong

Sign in / Sign up

Export Citation Format

Share Document