A VISUAL FRAMEWORK FOR DISPLAYING, COMMUNICATING AND COORDINATING A RIVER RESTORATION MONITORING PROJECT

2013 ◽  
Vol 30 (4) ◽  
pp. 527-535 ◽  
Author(s):  
C. J. P. Podolak
2017 ◽  
Vol 5 (1) ◽  
pp. e1257 ◽  
Author(s):  
Christine Weber ◽  
Ulrika Åberg ◽  
Anthonie D. Buijse ◽  
Francine M.R. Hughes ◽  
Brendan G. McKie ◽  
...  

2011 ◽  
Vol 8 (2) ◽  
pp. 2609-2626 ◽  
Author(s):  
T. A. Endreny ◽  
M. M. Soulman

Abstract. River restoration design methods are incrementally improved by studying and learning from monitoring data in previous projects. In this paper, we report post-restoration monitoring data for a Natural Channel Design (NCD) restoration project along 1600 m (10 channel wavelengths) of the Batavia Kill in the Catskill Mountains, NY, implemented in 2001 and 2002. The NCD project used a reference-reach to determine channel form, empirical relations between the project site and reference site bankfull dimensions to size channel geometry, and hydraulic and sediment computations to test channel capacity and sediment stability. In addition 12 cross-vanes and 48 j-hook vanes used in NCD for river training were installed to protect against bank erosion and maintain scour pools for fish habitat. Changes in pool depths were monitored with surveys from 2002–2004, and then after the channel-altering April 2005 flood. Aggradation in pools was attributed to cross-vane arms not concentrating flow in the center of the channel, which subsequently caused flow splitting and 4 partial point bar avulsions during the 2005 flood. Hydrodynamic simulation at the 18 m3s−1 bankfull flow suggested avulsions occurred where vanes allowed erosive bank scour to initiate the avulsion cut, and once the flow was split, the diminished in-channel flow caused more aggradation in the pools. In this project post-restoration monitoring had detected aggradation and considered it a problem. The lesson for the larger river restoration community is monitoring protocol should include complementary hydraulic and sediment analysis to comprehend potential consequences and develop preventative maintenance. River restoration and monitoring teams should be trained in robust hydraulic and sediment analytical methods that help them extend project restoration goals.


2011 ◽  
Vol 15 (7) ◽  
pp. 2119-2126 ◽  
Author(s):  
T. A. Endreny ◽  
M. M. Soulman

Abstract. River restoration design methods are incrementally improved by studying and learning from monitoring data in previous projects. In this paper we report post-restoration monitoring data and simulation analysis for a Natural Channel Design (NCD) restoration project along 1600 m of the Batavia Kill (14 km2 watershed) in the Catskill Mountains, NY. The restoration project was completed in 2002 with goals to reduce bank erosion and determine the efficacy of NCD approaches for restoring headwater streams in the Catskill Mountains, NY. The NCD approach used a reference-reach to determine channel form, empirical relations between the project site and reference site bankfull dimensions to size channel geometry, and hydraulic and sediment computations based on a bankfull (1.3 yr return interval) discharge to test channel capacity and sediment stability. The NCD project included 12 cross-vanes and 48 j-hook vanes as river training structures along 19 meander bends to protect against bank erosion and maintain scour pools for fish habitat. Monitoring data collected from 2002 to 2004 were used to identify aggradation of pools in meander bends and below some structures. Aggradation in pools was attributed to the meandering riffle-pool channel trending toward step-pool morphology and cross-vane arms not concentrating flow in the center of the channel. The aggradation subsequently caused flow splitting and 4 partial point bar avulsions during a spring 2005 flood with a 25-yr return interval. Processing the pre-flood monitoring data with hydraulic analysis software provided clues the reach was unstable and preventative maintenance was needed. River restoration and monitoring teams should be trained in robust hydraulic analytical methods that help them extend project restoration goals and structure stability.


Author(s):  
Martin Richardson ◽  
Mikhail Soloviev

Human activities have been affecting rivers and other natural systems for millennia. Anthropogenic changes to rivers over the last few centuries led to the accelerating state of decline of coastal and estuarine regions globally. Urban rivers are parts of larger catchment ecosystems, which in turn form parts of wider nested, interconnected systems. Accurate modelling of urban rivers may not be possible because of the complex multisystem interactions operating concurrently and over different spatial and temporal scales. This paper overviews urban river syndrome, the accelerating deterioration of urban river ecology, and outlines growing conservation challenges of river restoration projects. This paper also reviews the river Thames, which is a typical urban river that suffers from growing anthropogenic effects and thus represents all urban rivers of similar type. A particular emphasis is made on ecosystem adaptation, widespread extinctions and the proliferation of non-native species in the urban Thames. This research emphasizes the need for a holistic systems approach to urban river restoration.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1608
Author(s):  
Salvatore Ivo Giano

This Special Issue deals with the role of fluvial geomorphology in landscape evolution and the impact of human activities on fluvial systems, which require river restoration and management [...]


10.1068/a3637 ◽  
2004 ◽  
Vol 36 (11) ◽  
pp. 1929-1942 ◽  
Author(s):  
William M Adams ◽  
Martin R Perrow ◽  
Angus Carpenter

Sign in / Sign up

Export Citation Format

Share Document