Flow regime alterations under changing climate in two river basins: implications for freshwater ecosystems

2005 ◽  
Vol 21 (8) ◽  
pp. 849-864 ◽  
Author(s):  
C. A. Gibson ◽  
J. L. Meyer ◽  
N. L. Poff ◽  
L. E. Hay ◽  
A. Georgakakos

2008 ◽  
Vol 5 (6) ◽  
pp. 3005-3032 ◽  
Author(s):  
J.-P. Suen

Abstract. Observed increases in the Earth's surface temperature bring with them associated changes in precipitation and atmospheric moisture that consequentially alter river flow regimes. This paper uses the Indicators of Hydrologic Alteration approach to examine climate-induced flow regime changes that can potentially affect freshwater ecosystems. Analyses of the annual extreme water conditions at 23 gauging stations throughout Taiwan reveal large alterations in recent years; extreme flood and drought events were more frequent in the period after 1991 than from 1961–1990, and the frequency and duration of the flood and drought events also show high fluctuation. Climate change forecasts suggest that such flow regime alterations are going to continue into the foreseeable future. Aquatic organisms not only feel the effects of anthropogenic damage to river systems, but they also face on-going threats of thermal and flow regime alterations associated with climate change. This paper calls attention to the issue, so that water resources managers can take precautionary measures that reduce the cumulative effects from anthropogenic influence and changing climate conditions.



2013 ◽  
Vol 25 (1-2) ◽  
pp. 136-148
Author(s):  
I. V. Gryb

The concept of an explosion in freshwater ecosystems as a result of the release of accumulated energy, accompanied by the destruction of the steady climax successions of hydrocenoses is presented. The typification of local explosions as well as methods for assessing their risk during the development of river basins are shown. The change in atmospheric circulation, impaired phases of the hydrological regime of rivers, increasing the average temperature of the planet, including in Polesie to 0,6 ºC, deforestation leads to concentration and release of huge amounts of unmanaged terrestrial energy, which manifests itself in the form of disasters and emergencies. Hydroecological explosion is formed as a result of multifactorial external influence (natural and anthropogenic) on the water body in a certain period of time. Moreover, its level at wastewater discharge depends on the mass of recycled impurities and behaved processing capacity of the reservoir, and the mass of dumped on biocides and the possibility of the water flow to their dilution and to the utilization of non-toxic concentrations. In all these cases the preservation of "centers of life" in the tributaries of the first order – local fish reproduction areas contributed to ecosystem recovery, and the entire ecosystem has evolved from equilibrium to non-equilibrium with further restructuring after the explosion and environmental transition to a new trophic level. It means that hydroecological explosion can be researched as the logical course of development of living matter in abiotic environmental conditions, ending abruptly with the formation of new species composition cenoses and new bio-productivity. The buffer capacity of the water environment is reduced due to re-development and anthropic transformation of geobiocenoses of river basins, which leads to a weakening of life resistance. This applies particularly to the southern industrial regions of Ukraine, located in the arid zone that is even more relevant in the context of increased average temperature due to the greenhouse effect, as well as to Polesie (Western, Central and Chernihiv), had been exposed to large-scale drainage of 60-80th years, which contributed to the degradation of peatlands and fitostroma. Imposing the western trace of emissions from the Chernobyl accident to these areas had created the conditions of prolonged hydroecological explosion in an intense process of aging water bodies, especially lakes, change in species composition of fish fauna and the occurrence of neoplasms at the organismal level. Under these conditions, for the existence of man and the environment the vitaukta should be strengthened, i.e. buffer resistance and capacitance the aquatic environment, bioefficiency on the one hand and balanced using the energy deposited - on the other. This will restore the functioning of ecosystems "channel-floodplain", "riverbed-lake", reducing the energy load on the aquatic environment. Hydroecological explosions of natural origin can not be considered a pathology – it is a jump process of natural selection of species of biota. Another thing, if they are of anthropogenic origin and if the magnitude of such an impact is on the power of geological factors. Hydroecological explosions can be regarded as a manifestation of environmental wars that consciously or unconsciously, human society is waging against themselves and their kind in the river basins, so prevention of entropy increase in the aquatic environment and the prevention of hydroecological explosions is a matter of human survival. While the man - is not the final link in the development of living matter, it can develop without him, as matter is eternal, and the forms of its existence are different.



2014 ◽  
Vol 59 (8) ◽  
pp. 1491-1506 ◽  
Author(s):  
Pierre Chevallier ◽  
Bernard Pouyaud ◽  
Marie Mojaïsky ◽  
Mikhaïl Bolgov ◽  
Oliver Olsson ◽  
...  




2020 ◽  
Vol 24 (3) ◽  
pp. 1031-1054 ◽  
Author(s):  
Thibault Hallouin ◽  
Michael Bruen ◽  
Fiachra E. O'Loughlin

Abstract. The ecological integrity of freshwater ecosystems is intimately linked to natural fluctuations in the river flow regime. In catchments with little human-induced alterations of the flow regime (e.g. abstractions and regulations), existing hydrological models can be used to predict changes in the local flow regime to assess any changes in its rivers' living environment for endemic species. However, hydrological models are traditionally calibrated to give a good general fit to observed hydrographs, e.g. using criteria such as the Nash–Sutcliffe efficiency (NSE) or the Kling–Gupta efficiency (KGE). Much ecological research has shown that aquatic species respond to a range of specific characteristics of the hydrograph, including magnitude, frequency, duration, timing, and the rate of change of flow events. This study investigates the performance of specially developed and tailored criteria formed from combinations of those specific streamflow characteristics (SFCs) found to be ecologically relevant in previous ecohydrological studies. These are compared with the more traditional Kling–Gupta criterion for 33 Irish catchments. A split-sample test with a rolling window is applied to reduce the influence on the conclusions of differences between the calibration and evaluation periods. These tailored criteria are shown to be marginally better suited to predicting the targeted streamflow characteristics; however, traditional criteria are more robust and produce more consistent behavioural parameter sets, suggesting a trade-off between model performance and model parameter consistency when predicting specific streamflow characteristics. Analysis of the fitting to each of 165 streamflow characteristics revealed a general lack of versatility for criteria with a strong focus on low-flow conditions, especially in predicting high-flow conditions. On the other hand, the Kling–Gupta efficiency applied to the square root of flow values performs as well as two sets of tailored criteria across the 165 streamflow characteristics. These findings suggest that traditional composite criteria such as the Kling–Gupta efficiency may still be preferable over tailored criteria for the prediction of streamflow characteristics, when robustness and consistency are important.



2014 ◽  
Vol 18 (12) ◽  
pp. 5041-5059 ◽  
Author(s):  
A. V. Pastor ◽  
F. Ludwig ◽  
H. Biemans ◽  
H. Hoff ◽  
P. Kabat

Abstract. As the water requirement for food production and other human needs grows, quantification of environmental flow requirements (EFRs) is necessary to assess the amount of water needed to sustain freshwater ecosystems. EFRs are the result of the quantification of water necessary to sustain the riverine ecosystem, which is calculated from the mean of an environmental flow (EF) method. In this study, five EF methods for calculating EFRs were compared with 11 case studies of locally assessed EFRs. We used three existing methods (Smakhtin, Tennant, and Tessmann) and two newly developed methods (the variable monthly flow method (VMF) and the Q90_Q50 method). All methods were compared globally and validated at local scales while mimicking the natural flow regime. The VMF and the Tessmann methods use algorithms to classify the flow regime into high, intermediate, and low-flow months and they take into account intra-annual variability by allocating EFRs with a percentage of mean monthly flow (MMF). The Q90_Q50 method allocates annual flow quantiles (Q90 and Q50) depending on the flow season. The results showed that, on average, 37% of annual discharge was required to sustain environmental flow requirement. More water is needed for environmental flows during low-flow periods (46–71% of average low-flows) compared to high-flow periods (17–45% of average high-flows). Environmental flow requirements estimates from the Tennant, Q90_Q50, and Smakhtin methods were higher than the locally calculated EFRs for river systems with relatively stable flows and were lower than the locally calculated EFRs for rivers with variable flows. The VMF and Tessmann methods showed the highest correlation with the locally calculated EFRs (R2=0.91). The main difference between the Tessmann and VMF methods is that the Tessmann method allocates all water to EFRs in low-flow periods while the VMF method allocates 60% of the flow in low-flow periods. Thus, other water sectors such as irrigation can withdraw up to 40% of the flow during the low-flow season and freshwater ecosystems can still be kept in reasonable ecological condition. The global applicability of the five methods was tested using the global vegetation and the Lund-Potsdam-Jena managed land (LPJmL) hydrological model. The calculated global annual EFRs for fair ecological conditions represent between 25 and 46% of mean annual flow (MAF). Variable flow regimes, such as the Nile, have lower EFRs (ranging from 12 to 48% of MAF) than stable tropical regimes such as the Amazon (which has EFRs ranging from 30 to 67% of MAF).



2021 ◽  
Vol 29 (4) ◽  
pp. 49-60
Author(s):  
KeszeliovÁ Anita ◽  
HlavČovÁ Kamila ◽  
DanÁČovÁ Michaela ◽  
DanÁČovÁ Zuzana ◽  
Szolgay Ján

Abstract Due to a changing climate, likely changes to a hydrological regime are one of the primary sources of uncertainty to consider in managing water resources. In Slovakia, a decline in the country’s water resources, combined with a change in the seasonality of runoff and an increase in the extremeness of floods and droughts, represents a potential threat. The objective of the paper was to explore trends in the components of the long-term hydrological balance of various river basins to detect the impacts of changing climate conditions along the Western Carpathians. The proposed method is a comparative exploratory analysis of the hydrological balance of the selected river basins. Temporal changes in the catchments’ average air temperatures, precipitation, runoff, and their differences (considered as an index of the actual evapotranspiration), were estimated for 49 years of data; two non-overlapping sub-periods (25 and 24 years) in the seven river basins were also compared. This work also aims at evaluating the applicability of gridded inputs from the CarpatClim database for modelling the hydrological balance over an extended period. The results document the impact of the rising air temperature and, in part, local physiographic factors on the changes in runoff and actual catchment evapotranspiration.



Sign in / Sign up

Export Citation Format

Share Document