scholarly journals Calibration of hydrological models for ecologically relevant streamflow predictions: a trade-off between fitting well to data and estimating consistent parameter sets?

2020 ◽  
Vol 24 (3) ◽  
pp. 1031-1054 ◽  
Author(s):  
Thibault Hallouin ◽  
Michael Bruen ◽  
Fiachra E. O'Loughlin

Abstract. The ecological integrity of freshwater ecosystems is intimately linked to natural fluctuations in the river flow regime. In catchments with little human-induced alterations of the flow regime (e.g. abstractions and regulations), existing hydrological models can be used to predict changes in the local flow regime to assess any changes in its rivers' living environment for endemic species. However, hydrological models are traditionally calibrated to give a good general fit to observed hydrographs, e.g. using criteria such as the Nash–Sutcliffe efficiency (NSE) or the Kling–Gupta efficiency (KGE). Much ecological research has shown that aquatic species respond to a range of specific characteristics of the hydrograph, including magnitude, frequency, duration, timing, and the rate of change of flow events. This study investigates the performance of specially developed and tailored criteria formed from combinations of those specific streamflow characteristics (SFCs) found to be ecologically relevant in previous ecohydrological studies. These are compared with the more traditional Kling–Gupta criterion for 33 Irish catchments. A split-sample test with a rolling window is applied to reduce the influence on the conclusions of differences between the calibration and evaluation periods. These tailored criteria are shown to be marginally better suited to predicting the targeted streamflow characteristics; however, traditional criteria are more robust and produce more consistent behavioural parameter sets, suggesting a trade-off between model performance and model parameter consistency when predicting specific streamflow characteristics. Analysis of the fitting to each of 165 streamflow characteristics revealed a general lack of versatility for criteria with a strong focus on low-flow conditions, especially in predicting high-flow conditions. On the other hand, the Kling–Gupta efficiency applied to the square root of flow values performs as well as two sets of tailored criteria across the 165 streamflow characteristics. These findings suggest that traditional composite criteria such as the Kling–Gupta efficiency may still be preferable over tailored criteria for the prediction of streamflow characteristics, when robustness and consistency are important.

2019 ◽  
Author(s):  
Thibault Hallouin ◽  
Michael Bruen ◽  
Fiachra E. O'Loughlin

Abstract. The ecological integrity of freshwater ecosystems is intimately linked to natural fluctuations in the river flow regime. Anthropogenic alterations in flow regimes threaten water security and freshwater biodiversity in many regions of the world. The impacts of climate change on the hydrological cycle change local flow regimes and thus impact on the ecological systems. In catchments with little human-induced hydro-morphological changes, existing hydrological models can be used to predict changes in local flow regime in order to assess whether its rivers remain a suitable living environment for endemic species. However, hydrological models are traditionally calibrated to give a good general fit between observed and simulated hydrographs, e.g., using an optimisation with an objective function such as the Nash-Sutcliffe, or the Kling–Gupta efficiencies. Much ecological research has shown that aquatic species respond to very specific characteristics of the hydrograph, whether magnitude, frequency, duration, timing, and rate of change of flow events. Since each community in a river may be particularly sensitive to a few very specific streamflow characteristics, alternative hydrological model calibration strategies are needed, focussing on good performance for those specific characteristics. This study investigates the performance of a set of specially developed, bespoke, objective functions made of combinations of specific streamflow characteristics relevant for fish and invertebrate communities. These are compared with the more traditional objective functions on a set of 33 Irish catchments with little human regulation. A split-sample test with a rolling-window procedure is applied to reduce the influence of variations between the calibration/evaluation periods on the conclusions. These bespoke objective functions are shown to be better suited to predict the targetted streamflow characteristics in terms of performance in evaluation; however, traditional objective functions yield more consistent behavioural parameter sets, indicating a trade-off between model performance and model consistency when predicting streamflow characteristics, especially when the number of target streamflow characteristics are low.


1988 ◽  
Vol 23 (1) ◽  
pp. 55-68 ◽  
Author(s):  
J. H. Carey ◽  
J. H. Hart

Abstract The identity and concentrations of chlorophenolic compounds in the Fraser River estuary were determined under conditions of high and low river flow at three sites: a site upstream from the trifurcation and at downstream sites for each main river arm. Major chlorophenolics present under both flow regimes were 2,4,6-trichlorophenol (2,4,6-TCP), 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP), pentachlorophenol (PCP), tetrachloroguaiacol (TeCG) and a compound tentatively identified as 3,4,5-trichloroguaiacol (3,4,5-TCG). Under high flow conditions, concentrations of the guaiacols were higher than any of the Chlorophenols and concentrations of all five chlorophenolics appeared to correlate. Under low flow conditions, concentrations of chloroguaiacols were higher than Chlorophenols at the upstream site and at the downstream site on the Main Arm, whereas at the downstream site on the North Arm, concentrations of 2,3,4,6-TeCP and PCP were higher than the chloroguaiacols in some samples. Overall, the results indicate that pulp mills upstream from the estuary are important sources of chlorophenolics to the estuary under all flow conditions. Additional episodic inputs of 2,3,4,6-TeCP and PCP from lumber mills occur along the North Arm. When these inputs occur, they can cause the concentrations of Chlorophenols in the North Arm to exceed provisional objectives. If chloroguaiacols are included as part of the objective, concentrations of total chlorophenolics in water entering the estuary can approach and exceed these objectives, especially under low flow conditions.


2008 ◽  
Vol 5 (6) ◽  
pp. 3005-3032 ◽  
Author(s):  
J.-P. Suen

Abstract. Observed increases in the Earth's surface temperature bring with them associated changes in precipitation and atmospheric moisture that consequentially alter river flow regimes. This paper uses the Indicators of Hydrologic Alteration approach to examine climate-induced flow regime changes that can potentially affect freshwater ecosystems. Analyses of the annual extreme water conditions at 23 gauging stations throughout Taiwan reveal large alterations in recent years; extreme flood and drought events were more frequent in the period after 1991 than from 1961–1990, and the frequency and duration of the flood and drought events also show high fluctuation. Climate change forecasts suggest that such flow regime alterations are going to continue into the foreseeable future. Aquatic organisms not only feel the effects of anthropogenic damage to river systems, but they also face on-going threats of thermal and flow regime alterations associated with climate change. This paper calls attention to the issue, so that water resources managers can take precautionary measures that reduce the cumulative effects from anthropogenic influence and changing climate conditions.


2020 ◽  
Vol 12 (23) ◽  
pp. 10030
Author(s):  
Verônica Léo ◽  
Hersília Santos ◽  
Letícia Pereira ◽  
Lilia Oliveira

The demand for freshwater resources and climate change pose a simultaneous threat to rivers. Those impacts are often analyzed separately, and some human impacts are widely evaluated in river dynamics—especially in downstream areas rather than the consequences of land cover changes in headwater reaches. The distinction between anthropogenic and climate on the components of the flow regime is proposed here for an upstream free dam reach whose watershed is responsible for the water supply in Rio de Janeiro. Indicators of hydrologic alteration (IHA) and the range of variability approach (RVA) combined with statistical analyses of anthropogenic and climate parameters indicated that (1) four river flow components (magnitude, frequency, duration, and rate of change) were greatly altered from the previous period (1947 to 1967) and the actual (1994 to 2014); (2) shifts in the sea surface temperature of the Atlantic correlated with flow magnitude; (3) the cattle activity effects on the flow regime of the studied area decreased 42.6% of superficial discharge; global climate change led to a 10.8% reduction in the same river component. This research indicated that climate change will impact the intensification of human actions on rivers in the southeast Brazilian headwaters.


2009 ◽  
Vol 36 (3) ◽  
pp. 519-523 ◽  
Author(s):  
Spyros Beltaos

A hydrologic extreme that can be partly generated by ice effects is low winter flow, which is known for potential impacts on water quality and quantity of rivers receiving effluent discharges or industrial withdrawals. Flow abstraction caused by hydraulic storage during the upstream propagation of an ice cover is quantified using the equations of continuity for ice and water. The flow abstraction is shown to increase with increasing ice concentration, but to decrease with increasing ice cover thickness. Numerical values are consistent with winter abstractions indicated by flow data from Canadian hydrometric stations. The present results further suggest that low-flow conditions in winter should generally improve, or at least not deteriorate, under a warmer climate.


2014 ◽  
Vol 18 (12) ◽  
pp. 5041-5059 ◽  
Author(s):  
A. V. Pastor ◽  
F. Ludwig ◽  
H. Biemans ◽  
H. Hoff ◽  
P. Kabat

Abstract. As the water requirement for food production and other human needs grows, quantification of environmental flow requirements (EFRs) is necessary to assess the amount of water needed to sustain freshwater ecosystems. EFRs are the result of the quantification of water necessary to sustain the riverine ecosystem, which is calculated from the mean of an environmental flow (EF) method. In this study, five EF methods for calculating EFRs were compared with 11 case studies of locally assessed EFRs. We used three existing methods (Smakhtin, Tennant, and Tessmann) and two newly developed methods (the variable monthly flow method (VMF) and the Q90_Q50 method). All methods were compared globally and validated at local scales while mimicking the natural flow regime. The VMF and the Tessmann methods use algorithms to classify the flow regime into high, intermediate, and low-flow months and they take into account intra-annual variability by allocating EFRs with a percentage of mean monthly flow (MMF). The Q90_Q50 method allocates annual flow quantiles (Q90 and Q50) depending on the flow season. The results showed that, on average, 37% of annual discharge was required to sustain environmental flow requirement. More water is needed for environmental flows during low-flow periods (46–71% of average low-flows) compared to high-flow periods (17–45% of average high-flows). Environmental flow requirements estimates from the Tennant, Q90_Q50, and Smakhtin methods were higher than the locally calculated EFRs for river systems with relatively stable flows and were lower than the locally calculated EFRs for rivers with variable flows. The VMF and Tessmann methods showed the highest correlation with the locally calculated EFRs (R2=0.91). The main difference between the Tessmann and VMF methods is that the Tessmann method allocates all water to EFRs in low-flow periods while the VMF method allocates 60% of the flow in low-flow periods. Thus, other water sectors such as irrigation can withdraw up to 40% of the flow during the low-flow season and freshwater ecosystems can still be kept in reasonable ecological condition. The global applicability of the five methods was tested using the global vegetation and the Lund-Potsdam-Jena managed land (LPJmL) hydrological model. The calculated global annual EFRs for fair ecological conditions represent between 25 and 46% of mean annual flow (MAF). Variable flow regimes, such as the Nile, have lower EFRs (ranging from 12 to 48% of MAF) than stable tropical regimes such as the Amazon (which has EFRs ranging from 30 to 67% of MAF).


Author(s):  
Cristina Aguilar ◽  
Alberto Montanari ◽  
María José Polo

Abstract. How long a river remembers its past is still an open question. Perturbations occurring in large catchments may impact the flow regime for several weeks and months, therefore providing a physical explanation for the occasional tendency of floods to occur in clusters. The research question explored in this paper may be stated as follows: can higher than usual river discharges in the low flow season be associated to a higher probability of floods in the subsequent high flow season? The physical explanation for such association may be related to the presence of higher soil moisture storage at the beginning of the high flow season, which may induce lower infiltration rates and therefore higher river runoff. Another possible explanation is persistence of climate, due to presence of long-term properties in atmospheric circulation. We focus on the Po River at Pontelagoscuro, whose catchment area amounts to 71 000 km2. We look at the stochastic connection between average river flows in the pre-flood season and the peak flows in the flood season by using a bivariate probability distribution. We found that the shape of the flood frequency distribution is significantly impacted by the river flow regime in the low flow season. The proposed technique, which can be classified as a data assimilation approach, may allow one to reduce the uncertainty associated to the estimation of the flood probability.


2020 ◽  
Vol 44 (6) ◽  
pp. 948-970 ◽  
Author(s):  
Ali Torabi Haghighi ◽  
Mojtaba Sadegh ◽  
Joy Bhattacharjee ◽  
Mehmet Emin Sönmez ◽  
Mojtaba Noury ◽  
...  

The Arvandroud river (also known as Shatt-al-Arab) and its estuary have been degraded due to the changing river flow regime in the Tigris and Euphrates. This study assessed changes in flow from the major rivers and the impacts on the estuary. To assess the river flow changes, three major flow regime attributes were computed: timing (TIF), magnitude (MIF), and variability (VIF). By combining these indices, the total flow regime impact factor (IF) was scaled between 0 and 1, and classified into five groups: Low (0.80<IF<1.0), Incipient (0.60<IF<0.80), Moderate (0.40<IF<0.60), Severe (0.2<IF<0.40), and Drastic (0.0<IF<0.20). Flow regime impact maps were then created for 1941–1955, 1960–1970, 1975–1984, and 1990–2000. These revealed that, over time, the impact has extended along the basin from downstream to upstream, with a significant flow regime change from 1941–1955 to 1990–2000 in the Tigris, Euphrates, and Arvandroud. Analysis of remote sensing data revealed that the change in the flow regime has led to land degradation in the Arvandroud estuary during the past 46 years (1972–2018). In addition, the impact of the Iran–Iraq war (based on degradation of vegetation cover between 1985 and 1988) is 5.1 times of mean rate of change during 1972–2018. This study thus contributes new information on estuaries and the impact of upstream land and water use change.


1992 ◽  
Vol 23 (3) ◽  
pp. 137-154 ◽  
Author(s):  
I. Krasovskaia ◽  
L. Gottschalk

One of the most important consequences of future climate change may be an alteration of the surface hydrological balance, including changes in flow regimes, i.e. seasonal distribution of flow and especially the time of occurrence of high/low flow, which is of vital importance for environmental and economic policies. Classification of flow regimes still has an important role for the analyses of hydrological response to climate change as well as for validating climate models on present climatic and hydrologic data, however, with some modifications in the methodology. In this paper an approach for flow regime classification is developed in this context. Different ways of flow regime classification are discussed. The stability of flow regimes is studied in relation to changes in mean annual temperature and precipitation. The analyses have shown that even rather small changes in these variables can cause changes in river flow regimes. Different patterns of response have been traced for different regions of the Nordic countries.


2011 ◽  
Vol 15 (5) ◽  
pp. 1537-1545 ◽  
Author(s):  
A. K. Gain ◽  
W. W. Immerzeel ◽  
F. C. Sperna Weiland ◽  
M. F. P. Bierkens

Abstract. Climate change is likely to have significant effects on the hydrology. The Ganges-Brahmaputra river basin is one of the most vulnerable areas in the world as it is subject to the combined effects of glacier melt, extreme monsoon rainfall and sea level rise. To what extent climate change will impact river flow in the Brahmaputra basin is yet unclear, as climate model studies show ambiguous results. In this study we investigate the effect of climate change on both low and high flows of the lower Brahmaputra. We apply a novel method of discharge-weighted ensemble modeling using model outputs from a global hydrological models forced with 12 different global climate models (GCMs). Our analysis shows that only a limited number of GCMs are required to reconstruct observed discharge. Based on the GCM outputs and long-term records of observed flow at Bahadurabad station, our method results in a multi-model weighted ensemble of transient stream flow for the period 1961–2100. Using the constructed transients, we subsequently project future trends in low and high river flow. The analysis shows that extreme low flow conditions are likely to occur less frequent in the future. However a very strong increase in peak flows is projected, which may, in combination with projected sea level change, have devastating effects for Bangladesh. The methods presented in this study are more widely applicable, in that existing multi-model streamflow simulations from global hydrological models can be weighted against observed streamflow data to assess at first order the effects of climate change for specific river basins.


Sign in / Sign up

Export Citation Format

Share Document