scholarly journals Ammonia volatilization, nitrous oxide emissions, and corn yields as influenced by nitrogen placement and enhanced efficiency fertilizers

2020 ◽  
Vol 84 (4) ◽  
pp. 1327-1341
Author(s):  
Alex L. Woodley ◽  
Craig F. Drury ◽  
Xueming Y. Yang ◽  
Lori A. Phillips ◽  
Daniel W. Reynolds ◽  
...  
2014 ◽  
Vol 43 (3) ◽  
pp. 789-800 ◽  
Author(s):  
Celso Aita ◽  
Rogério Gonzatto ◽  
Ezequiel C. C. Miola ◽  
Daniela B. dos Santos ◽  
Philippe Rochette ◽  
...  

1998 ◽  
Vol 130 (1) ◽  
pp. 69-79 ◽  
Author(s):  
S. O. PETERSEN ◽  
A.-M. LIND ◽  
S. G. SOMMER

Solid pig manure (240 g kg1 DM) and solid cattle manure (150-180 g kg1 DM) were stored in an open storage facility during spring-summer and autumn conditions for periods of 9-14 weeks during 1994 and 1995. Concentrations of C, N, P and K were determined prior to and after storage, corrected for dry matter losses and distance from the surface. Temperature and, in experiments with pig manure, gas phase composition inside the manure heap were monitored during storage. Nitrogen losses as ammonia volatilization, nitrous oxide emission and leaching were measured, while total denitrification was estimated from mass balance calculations. For both cattle and pig manure there was little difference between seasons with respect to the pattern of decomposition, as reflected in temperature dynamics and C/N turnover. In contrast, there was a distinct difference between manure types. Pig manure was characterized by maximum temperatures of 60-70°C, although the concentrations of oxygen and methane clearly demonstrated that anaerobic conditions dominated the interior parts of the heap for several weeks. Losses of C and N from pig manure both amounted to c. 50%. In contrast, the temperature of cattle manure remained close to the air temperature throughout the storage period and cattle manure had lower, not significant losses of C and N. Leaching losses of N constituted 1-4% with both manure types. Ammonia volatilization from cattle manure constituted 4-5% of total N, and from pig manure 23-24%. In pig manure a similar amount of N (23-33%) could not be accounted for after storage, a loss that was attributed to denitrification. Nitrous oxide emissions amounted to <2% of estimated denitrification losses.


2012 ◽  
Vol 31 (5) ◽  
pp. 983-994 ◽  
Author(s):  
Jun-Zeng Xu ◽  
Shi-Zhang Peng ◽  
Hui-Jing Hou ◽  
Shi-Hong Yang ◽  
Yu-Feng Luo ◽  
...  

2011 ◽  
Vol 37 (9) ◽  
pp. 1666-1675
Author(s):  
Hai-Ming TANG ◽  
Xiao-Ping XIAO ◽  
Wen-Guang TANG ◽  
Guang-Li YANG

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Khadim Dawar ◽  
Shah Fahad ◽  
M. M. R. Jahangir ◽  
Iqbal Munir ◽  
Syed Sartaj Alam ◽  
...  

AbstractIn this study, we explored the role of biochar (BC) and/or urease inhibitor (UI) in mitigating ammonia (NH3) and nitrous oxide (N2O) discharge from urea fertilized wheat cultivated fields in Pakistan (34.01°N, 71.71°E). The experiment included five treatments [control, urea (150 kg N ha−1), BC (10 Mg ha−1), urea + BC and urea + BC + UI (1 L ton−1)], which were all repeated four times and were carried out in a randomized complete block design. Urea supplementation along with BC and BC + UI reduced soil NH3 emissions by 27% and 69%, respectively, compared to sole urea application. Nitrous oxide emissions from urea fertilized plots were also reduced by 24% and 53% applying BC and BC + UI, respectively, compared to urea alone. Application of BC with urea improved the grain yield, shoot biomass, and total N uptake of wheat by 13%, 24%, and 12%, respectively, compared to urea alone. Moreover, UI further promoted biomass and grain yield, and N assimilation in wheat by 38%, 22% and 27%, respectively, over sole urea application. In conclusion, application of BC and/or UI can mitigate NH3 and N2O emissions from urea fertilized soil, improve N use efficiency (NUE) and overall crop productivity.


Eos ◽  
2008 ◽  
Vol 89 (51) ◽  
pp. 529 ◽  
Author(s):  
Stephen J. Del Grosso ◽  
Tom Wirth ◽  
Stephen M. Ogle ◽  
William J. Parton

2021 ◽  
Author(s):  
Debasish Saha ◽  
Jason P. Kaye ◽  
Arnab Bhowmik ◽  
Mary Ann Bruns ◽  
John M. Wallace ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document