scholarly journals Quantitative scanning electron microscopy using integrated digital image store for on-line image analysis

Scanning ◽  
1985 ◽  
Vol 7 (5) ◽  
pp. 239-242 ◽  
Author(s):  
J. P. Martin ◽  
G. Jenkinson ◽  
D. Bulgin
2010 ◽  
Vol 177 ◽  
pp. 530-532 ◽  
Author(s):  
Xin Gang Yu ◽  
Shi Song Luo ◽  
Yan Na Gao ◽  
Hong Fei Wang ◽  
Yue Xiang Li ◽  
...  

The pore structure and microstructure of the foam concrete was analyzed by scanning electron microscopy and light microscopy combined with digital image analysis. The results show that: (1) even-distributed fine and close pores resulting in high strength and low permeability; (2) uneven-distributed large size pores and open pores lead to low strength and high permeability; (3) light microscopy combined with digital image analysis is a cheap and convenient tool fitting for the pore structure analysis of the foam concrete; (4) scanning electron microscopy is very appropriate for the pore structure and microstructure analysis of the foam concrete.


2017 ◽  
Vol 130 (10) ◽  
pp. 1845-1855 ◽  
Author(s):  
Faye M. Nixon ◽  
Thomas R. Honnor ◽  
Nicholas I. Clarke ◽  
Georgina P. Starling ◽  
Alison J. Beckett ◽  
...  

2021 ◽  
Author(s):  
Rowan Mclachlan ◽  
Ashruti Patel ◽  
Andrea G Grottoli

Coral morphology is influenced by genetics, the environment, or the interaction of both, and thus is highly variable. This protocol outlines a non-destructive and relatively simple method for measuring Scleractinian coral sub-corallite skeletal structures (such as the septa length, theca thickness, and corallite diameter, etc.) using digital images produced as a result of digital microscopy or from scanning electron microscopy. This method uses X and Y coordinates of points placed onto photomicrographs to automatically calculate the length and/or diameter of a variety of sub-corallite skeletal structures in the Scleractinian coral Porites lobata. However, this protocol can be easily adapted for other coral species - the only difference may be the specific skeletal structures that are measured (for example, not all coral species have a pronounced columella or pali, or even circular corallites). This protocol is adapted from the methods described in Forsman et al. (2015) & Tisthammer et al. (2018). There are 4 steps to this protocol: 1) Removal of Organic Tissue from Coral Skeletons 2) Imaging of Coral Skeletons 3) Photomicrograph Image Analysis 4) Calculation of Corallite Microstructure Size This protocol was written by Dr. Rowan McLachlan and was reviewed by Ashruti Patel and Dr. Andréa Grottoli. Acknowledgments Leica DMS 1000 and Scanning Electron Microscopy photomicrographs used in this protocol were acquired at the Subsurface Energy Materials Characterization and Analysis Laboratory (SEMCAL), School of Earth Sciences at The Ohio State University, Ohio, USA. I would like to thank Dr. Julie Sheets, Dr. Sue Welch, and Dr. David Cole for training me on the use of these instruments.


2015 ◽  
Vol 59 (3) ◽  
pp. 87-90 ◽  
Author(s):  
J. Stoulil ◽  
P. Šedá ◽  
M. Anisová ◽  
Z. Fencl ◽  
P. Novák ◽  
...  

Abstract The paper is focused on analyses of dark copper patina defects that were formed on one sheet under the same conditions. Roofs of ten historical buildings were studied by image analysis and samples of two roofs were subjected to more detailed destructive analysis. These samples were studied by means of scanning electron microscopy with energy dispersive X-ray spectroscopy, X-ray diffraction and infrared spectroscopy. Both types of patina are composed of brochantite. Green patinas consisted of a pure brochantite and they had a fl at and compact surface. Conversely, black patina contained a high degree of impurities (ammonia cations, nitrates, silicates) and the surface was rough. The proportion of dark patina was higher in south and east facing surfaces, where washing by rainfall is more difficult.


2014 ◽  
Vol 20 (6) ◽  
pp. 1625-1637 ◽  
Author(s):  
Catalina Mansilla ◽  
Václav Ocelík ◽  
Jeff T. M. De Hosson

AbstractThis paper presents a statistical method to analyze instabilities that can be introduced during imaging in scanning electron microscopy (SEM). The method is based on the correlation of digital images and it can be used at different length scales. It consists of the evaluation of three different approaches with four parameters in total. The methodology is exemplified with a specific case of internal stress measurements where ion milling and SEM imaging are combined with digital image correlation. It is concluded that before these measurements it is important to test the SEM column to ensure the minimization and randomization of the imaging instabilities. The method has been applied onto three different field emission gun SEMs (Philips XL30, Tescan Lyra, FEI Helios 650) that represent three successive generations of SEMs. Important to note that the imaging instability can be quantified and its source can be identified.


Sign in / Sign up

Export Citation Format

Share Document