53.1: Full‐Color Micro‐LED Display based on MOCVD Growth of Two Types of InGaN/GaN MQWs

2021 ◽  
Vol 52 (S2) ◽  
pp. 629-629
Author(s):  
Zhou Wang ◽  
Shijie Zhu ◽  
Xinyi Shan ◽  
Zexing Yuan ◽  
Xugao Cui ◽  
...  
Keyword(s):  
2005 ◽  
Vol 892 ◽  
Author(s):  
Jung Han ◽  
K Kim ◽  
Jie Su ◽  
Maria Gherasimova ◽  
Arto Nurmikko ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
Pengbo Han ◽  
Zeng Xu ◽  
Chengwei Lin ◽  
Dongge Ma ◽  
Anjun Qin ◽  
...  

Deep blue organic-emitting fluorophores are crucial for application in white lighting and full color flat-panel displays but emitters with high color quality and efficiency are rare. Herein, novel deep blue AIE luminogens (AIEgens) with various donor units and an acceptor of cyano substituted tetraphenylbenzene (TPB) cores were developed and used to fabricate non-doped deep blue and hybrid white organic light-emitting diodes (OLEDs). Benefiting from its high emission efficiency and high proportion of horizontally oriented dipoles in the film state, the non-doped deep blue device based on CN-TPB-TPA realized a maximum external quantum efficiency 7.27%, with a low efficiency roll-off and CIE coordinates of (0.15, 0.08). Moreover, efficient two-color hybrid warm white OLEDs (CIE<sub>x,y</sub> = 0.43, 0.45) were achieved using CN-TPB-TPA as the blue-emitting layer and phosphor doped host, which realized maximum current, power, external quantum efficiencies 58.0 cd A<sup>-1</sup>, 60.7 lm W<sup>-1</sup> and 19.1%, respectively. This work provides a general strategy to achieve high performance, stable deep blue and hybrid white OLEDs by construction of AIEgens with excellent horizontal orientation


Author(s):  
Hiroyuki Hakoi ◽  
Ming Ni ◽  
Junichi Hashimoto ◽  
Takashi Sato ◽  
Shinji Shimada ◽  
...  

Author(s):  
Hidenori Kawanishi ◽  
Hiroaki Onuma ◽  
Masumi Maegawa ◽  
Takashi Kurisu ◽  
Takashi Ono ◽  
...  

1995 ◽  
Vol 5 (4) ◽  
pp. 332-338
Author(s):  
Schuyler S. Korban ◽  
Cynthia A. St. Ores

“OrchardSim: Design of an Apple Orchard” is a computer simulation program that was developed as a tool for students and new apple growers to understand the process involved in designing an efficient apple orchard. This program was developed on Toolbook software. It explores key elements involved in designing an apple orchard. Users are introduced to these elements and then asked to make selections for each of the following parameters: soil type, cultivar, rootstock, and management system. The goal of the program is to find compatible selections that will result in an appropriate design of a 1-acre orchard. This full-color program uses text, graphics animation, and still pictures to provide the following: introductory and review information about each parameter, opportunities for the user to make a selection for each parameter, and a check for choices made to determine compatibility. Users receive feedback for each specific choice made for each of the parameters throughout the program. This simulation presents an alternative instructional tool, whereby the user plays an active role in the learning process by practicing and reviewing information at one's own pace. OrchardSim provides users with immediate feedback and an excellent opportunity for making high-risk decisions, with no financial loss that otherwise would have been costly if the learning process were pursued in the real orchard.


2020 ◽  
Vol 16 (5) ◽  
pp. 652-659
Author(s):  
Asiye A. Avan ◽  
Hayati Filik

Background: An Ionic Liquid-based based Dispersive Liquid-Liquid Microextraction (IL-DLLME) method was not applied to preconcentration and determination of bilirubin. Ionic Liquids (ILs) are new chemical compounds. In recent years, Ionic Liquids (ILs) have been employed as alternative solvents to toxic organic solvents. Due to these perfect properties, ILs have already been applied in many analytical extraction processes, presenting high extraction yield and selectivity for analytes. Methods: In this study, IL-DLLME was applied to biological samples (urine and serum) for the spectrophotometric detection of bilirubin. For bilirubin analysis, the full-color development was based on the reaction with periodate in the presence of hydrochloric acid. The high affinity of bilirubin for the ionic liquid phase gave extraction percentages above 98% in 0.3 M HCl solution. Results: Several IL-extraction parameters were optimized and room temperature ionic liquid 1-butyl- 1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide and ethanol were used as extraction and disperser solution. The linear range was found in the range of 0.5-6.0 μM (0.3-3.5 μg mL-1) and the limits of detection of the proposed method was 0.5 μM (0.3 μg mL-1). The proposed method was applied for the preconcentration and separation of trace bilirubin in real urine samples. Also, the recoveries for bilirubin in spiked biological samples (urine and serum) were found to be acceptable, between 95-102%. Conclusion: The proposed IL-DLLMEapproach was employed for the enrichment and determination of trace levels of bilirubin in urine samples using NaIO4 as an oxidizing agent and Uv-vis spectrophotometric detection. The periodate oxidation of bilirubin is rapid, effective, selective, and simple to perform. The method contains only HCl, NaOI4, and an anionic surfactant. The method may be useful for economizing in the consumption of reagents in bilirubin determining. The IL-DLLMEmethod ensures a high yield and has a low toxicity no skin sensitization, no mutagenicity and no ecotoxicity in an aquatic environment since only very low quantities of an IL is required. For full-color formation, no any extra auxiliary reagents are required. Besides, the IL-DLLME technique uses a low-cost instrument such as Uv-vis which is present in most of the medical laboratories.


Author(s):  
Martin E. Atkinson

Anatomy for Dental Students, Fourth Edition, demonstrates and explains all the anatomy needed for a modern dentistry undergraduate course. This text covers developmental anatomy, the thorax, the central nervous system, and the head and neck with an emphasis on the practical application of anatomical knowledge. This new edition has been extensively revised and updated in line with contemporary teaching and dental practice. Over 300 new full color diagrams map all the anatomical regions that dental students need to know, while the lively and accesible text guides the reader's learning. Throughout Clinical Application Boxes demonstrate how the form and function of anatomy have consequences for clinical practice. Sidelines boxes contain additional descriptions for key anatomical structures. This text is supported by an Online Resource Centre with multiple choice questions, drag and drop figure exercises, and links to key resources to help readers to consolidate and extend their knowledge of anatomy. Anatomy for Dental Students brings together anatomical structure, function, and their relationship to clinical practice, making it ideal for dental students.


Sign in / Sign up

Export Citation Format

Share Document