Structural health monitoring of metal components: A new approach based on electrochemical measurements

2012 ◽  
Vol 45 (10) ◽  
pp. 1570-1574 ◽  
Author(s):  
A. Astarita ◽  
A. Scala ◽  
V. Paradiso ◽  
A. Squillace ◽  
M. Iodice ◽  
...  
Author(s):  
Elizabeth J. Cross ◽  
Keith Worden ◽  
Qian Chen

Before structural health monitoring (SHM) technologies can be reliably implemented on structures outside laboratory conditions, the problem of environmental variability in monitored features must be first addressed. Structures that are subjected to changing environmental or operational conditions will often exhibit inherently non-stationary dynamic and quasi-static responses, which can mask any changes caused by the occurrence of damage. The current work introduces the concept of cointegration , a tool for the analysis of non-stationary time series, as a promising new approach for dealing with the problem of environmental variation in monitored features. If two or more monitored variables from an SHM system are cointegrated, then some linear combination of them will be a stationary residual purged of the common trends in the original dataset. The stationary residual created from the cointegration procedure can be used as a damage-sensitive feature that is independent of the normal environmental and operational conditions.


2007 ◽  
Vol 347 ◽  
pp. 505-510 ◽  
Author(s):  
Abdelhakim Ouahabi ◽  
Marc Thomas ◽  
Makiko Kobayashi ◽  
Cheng Kuei Jen

A new approach is proposed for conducting structural health monitoring, based on newly developed piezoceramic sensors. They are fabricated by a sol-gel spray technique. The potential application of these sensors may be broad. These sensors have been evaluated for structural health monitoring studies. The purpose of the present study aims the detection and the localization of defects by the means of these new piezoceramic sensors. Nine sensors were integrated onto a metallic plate with moving masses. The plate was excited by an impact at a specific location and the vibratory signals from sensors were recorded simultaneously. The analysis of signals obtained from nine locations was correlated with a numerical simulation in order to identify at each time the location of the mass.


2018 ◽  
Vol 3 (1) ◽  
pp. 942 ◽  
Author(s):  
Pedro De Oliveira Conceição Junior ◽  
Rodrigo De Souza Ruzzi ◽  
Wenderson Nascimento Lopes ◽  
Felipe Aparecido Alexandre ◽  
Fabricio Guimarães Baptista ◽  
...  

Among the methods used in structural health monitoring (SHM), the electromechanical impedance technique (EMI), which uses piezoelectric transducers of lead zirconate titanate (PZT), stands out for its low cost. This paper presents a new approach for monitoring of the dressing operation based on structural health monitoring from the digital processing of voltage signals based on the time-domain response of a PZT transducer by EMI method. Experimental tests of the dressing process were performed by using a single-point dresser equipped with a natural diamond. The voltage signals in the time-domain were collected in different damage levels using a measurements EMI System. By using damage metrics, it was possible to qualify different damage levels that the diamond suffered during the dressing operation, observing variations from the magnitude of the signals. The dressing operation is of utmost importance for the grinding process and the dresser wear negatively affects the result of the process, which owns high added value. In this way, this work contributes with a new monitoring tool which aims ensuring a consistent dressing operation.Keywords: Manufacturing process, automation, electromechanical impedance, dressing operation.


Sign in / Sign up

Export Citation Format

Share Document