scholarly journals A two‐stage prediction model for heterogeneous effects of treatments

2021 ◽  
Author(s):  
Konstantina Chalkou ◽  
Ewout Steyerberg ◽  
Matthias Egger ◽  
Andrea Manca ◽  
Fabio Pellegrini ◽  
...  
Author(s):  
Jin-Gu Kang ◽  
Dong-Woo Lim ◽  
Jin-Woo Jung

In this paper, we propose an adaptive duty-cycled hybrid X-MAC (ADX-MAC) protocol for energy-efficient forest fire prediction. The X-MAC protocol acquires the additional environmental status collected by each forest fire monitoring sensor for a certain period. And, based on these values, the length of sleep interval of duty-cycle is changed to efficiently calculate the risk of occurrence of forest fire according to the mountain environment. The performance of the proposed ADX-MAC protocol was verified through experiments the proposed ADX-MAC protocol improves throughput by 19% and was more energy-efficient by 24% compared to X-MAC protocol. As the probability of forest fires increases, the length of the duty cycle is shortened, confirming that the forest fires are detected at a faster cycle.


Author(s):  
Bowen Gao ◽  
Dongxiu Ou ◽  
Decun Dong ◽  
Yusen Wu

Accurate prediction of train delay recovery is critical for railway incident management and providing passengers with accurate journey time. In this paper, a two-stage prediction model is proposed to predict the recovery time of train primary-delay based on the real records from High-Speed Railway (HSR). In Stage 1, two models are built to study the influence of feature space and model framework on the prediction accuracy of buffer time in each section or station. It is found that explicitly inputting the attribute features of stations and sections to the model, instead of implicit simulation, will improve the prediction accuracy effectively. For validation purpose, the proposed model has been compared with several alternative models, namely, Logistic Regression (LR), Artificial Neutral Network (ANN), Support Vector Machine (SVM) and Gradient Boosting Tree (GBT). The results show that its remarkable performance is better than other schemes. Specifically, when the error is extended to 3[Formula: see text]min, the proposed model can achieve up to the accuracy of 94.63%. It proves that our method has high value in practical engineering application. Considering the delay propagation of trains is a complex process, our future study will focus on building delay propagation knowledge base and dispatcher experience knowledge base.


PLoS ONE ◽  
2020 ◽  
Vol 15 (5) ◽  
pp. e0233126
Author(s):  
Taichi Murayama ◽  
Nobuyuki Shimizu ◽  
Sumio Fujita ◽  
Shoko Wakamiya ◽  
Eiji Aramaki
Keyword(s):  

1979 ◽  
Vol 6 (2) ◽  
pp. 197-207 ◽  
Author(s):  
E. McBean ◽  
G. Farquhar ◽  
N. Kouwen ◽  
O. Dubek

A two-stage mathematical model is developed for predicting dissolved oxygen levels in ice-covered rivers. The first stage of the model is a prediction model for ice-edge progression as a function of time, and the second stage consists of an extrapolation of a widely used 'summer condition' water-quality model. The results of a series of experiments, both field and laboratory-based, which served as data input generators and calibration testing of the model, are provided.Briefcase-study applications of elements of the model to the Speed River and to the Saint John River are included.


Sign in / Sign up

Export Citation Format

Share Document