3‐(2‐(5‐Amino‐3‐aryl‐1 H ‐pyrazol‐1‐yl) thiazol‐4‐yl)‐2 H ‐chromen‐2‐ones as Potential Anticancer Agents: Synthesis, Anticancer Activity Evaluation and Molecular Docking Studies

2019 ◽  
Vol 4 (14) ◽  
pp. 4324-4330 ◽  
Author(s):  
Krishnaiah Vaarla ◽  
Santosh Karnewar ◽  
Devayani Panuganti ◽  
Saikiran Reddy Peddi ◽  
Rajeswar Rao Vedula ◽  
...  
Author(s):  
Priyanka P. Rode ◽  
Akshay R. Yadav ◽  
Ankita V. Chitruk ◽  
Shrinivas K. Mohite ◽  
Chandrakant S. Magdum

A series of novel N-(1H-benzimidazole-2-yl-carbamothioyl)benzamide derivatives were synthesized under microwave irradiation and evaluated for anticancer activity. The synthesized compounds were characterized by IR, 1H-NMR, and mass spectral data. Complexity associated with cancer disease and prevalence of diversified cell populations vindicates highly specific treatment options for treatment of cancer. Resistance to these anticancer agents has posed a great hindrance in successful treatment of cancer. Pondering this ongoing situation, it was speculated to develop novel compounds targeting cancer. All the newly synthesized compounds 3a-f were further evaluated for anticancer activity against MCF-7 cell lines using MTT assay. Molecular docking studies were performed using VLife MDS 4.3 software. The compounds 3c exhibited good docking scores of -60.37. The anticancer and docking results highlight the fact that the synthesized compounds 3c could be considered as possible hit as therapeutic agents. A significant correlation was observed between the in silico and the in vitro studies.


2018 ◽  
Vol 43 (3) ◽  
pp. 259-271 ◽  
Author(s):  
Ya-Xian Liu ◽  
Hui-Wen Mo ◽  
Zhen-Yu Lv ◽  
Fang Shen ◽  
Chun-Lian Zhang ◽  
...  

2013 ◽  
Vol 9 (3) ◽  
pp. 313-328 ◽  
Author(s):  
Agnieszka A. Kaczor ◽  
Monika Pitucha ◽  
Zbigniew Karczmarzyk ◽  
Waldemar Wysocki ◽  
Jolanta Rzymowska ◽  
...  

2013 ◽  
Vol 22 (11) ◽  
pp. 5256-5266 ◽  
Author(s):  
Vikas Garg ◽  
Ankit Kumar ◽  
Anurag Chaudhary ◽  
Saurabh Agrawal ◽  
Praveen Tomar ◽  
...  

2019 ◽  
Vol 70 (10) ◽  
pp. 3522-3526
Author(s):  
Smaranda Oniga ◽  
Catalin Araniciu ◽  
Gabriel Marc ◽  
Livia Uncu ◽  
Mariana Palage ◽  
...  

Considering the well-established antifungal activity of azole compounds, a new series of thiazolyl-methylen-1,3,4-oxadiazolines derivatives were designed and synthesized as lanosterol-demethylase inhibitors. The final compounds were screened for antifungal activity against the Candida albicans ATCC 90028 strain. Molecular docking studies were performed to investigate the interaction modes between the compounds and the active site of lanosterol 14a-demethylase, which is a target enzyme for anticandidal azoles. Theoretical ADME predictions were also calculated for the final compounds 5a-h.


2018 ◽  
Vol 48 (12) ◽  
pp. 1494-1503 ◽  
Author(s):  
Sreenu Pavurala ◽  
Krishnaiah Vaarla ◽  
Rajeshkumar Kesharwani ◽  
Lieve Naesens ◽  
Sandra Liekens ◽  
...  

2021 ◽  
Vol 33 (11) ◽  
pp. 2755-2761
Author(s):  
Shaheen Sultana ◽  
P. Pandian ◽  
B. Rajkamal

The synthesis of novel indole derivatives 4a-o using a microwave assisted method via Schiff’s base and Mannich base reaction mechanism was described. Compounds 3a-c were synthesized via reaction of 2-amino benzothiazole with substituted isatin by Schiff base reaction mechanism. Also, indole derivatives 4a-o were synthesized via reaction of compounds 3a-c with substituted benzaldehydes by Mannich base reaction. The biological potentials of the newly synthesized indole derivatives were evaluated for their anthelmintic activity and in vitro anticancer activity by MTT assay. The anticancer activity results suggested that indole derivatives 4c-o have activity against MCF-7 and SKOV3 cells in comparison with doxorubicin as standard drug. Furthermore, the molecular docking studies of these novel derivatives of indole showed good agreement with the biological results when their binding pattern and affinity towards the active site of EGFR was also investigated.


Author(s):  
HARSHITHA T ◽  
VINAY KUMAR T ◽  
VINEETHA T

Objective: The objective of the study was to perform in silico molecular docking and in vitro anticancer studies of proposed 1,2,4-triazole derivatives for the determination of their anticancer activity. Methods: A series of 10 triazole compounds with different substituents were drawn in ACD Lab ChemSketch software. Molecular and biological properties were identified using Molinspiration software. The compounds that obeyed Lipinski rule of five are subjected for pharmacokinetic parameters prediction and docking analysis. SwissDock ADME software is used for the prediction of absorption, distribution, metabolism, and elimination. Then, the compounds are docked with target enzymes in Chimera software 1.14 version. The molecular docking studies revealed favorable molecular interactions and binding energies. The compounds that showed good docking results were synthesized through wet lab synthesis and further preceded for in vitro anticancer studies. Results: Three compounds are selected for wet lab synthesis due to their good docking results compared to other compounds. The synthesized compounds are subjected to different in vitro anticancer studies and found to be having potential anticancer activity. Conclusion: The pharmacokinetic and docking studies conclude that the triazole compounds have potential as anticancer agents. The in vitro anticancer studies revealed that the triazole derivatives are having high potency of anticancer activity against pancreatic cell lines.


RSC Advances ◽  
2015 ◽  
Vol 5 (64) ◽  
pp. 51730-51744 ◽  
Author(s):  
Kang Zheng ◽  
Liu Jiang ◽  
Yan-Tuan Li ◽  
Zhi-Yong Wu ◽  
Cui-Wei Yan

Two new dicopper(ii) complexes were synthesized and structurally characterized. The effect of substituent groups on the bridging ligands was explored theoretically and experimentally.


Sign in / Sign up

Export Citation Format

Share Document