IN SILICO CHARACTERIZATION, MOLECULAR DOCKING, AND IN VITRO EVALUATION OF TRIAZOLE DERIVATIVES AS POTENTIAL ANTICANCER AGENTS

Author(s):  
HARSHITHA T ◽  
VINAY KUMAR T ◽  
VINEETHA T

Objective: The objective of the study was to perform in silico molecular docking and in vitro anticancer studies of proposed 1,2,4-triazole derivatives for the determination of their anticancer activity. Methods: A series of 10 triazole compounds with different substituents were drawn in ACD Lab ChemSketch software. Molecular and biological properties were identified using Molinspiration software. The compounds that obeyed Lipinski rule of five are subjected for pharmacokinetic parameters prediction and docking analysis. SwissDock ADME software is used for the prediction of absorption, distribution, metabolism, and elimination. Then, the compounds are docked with target enzymes in Chimera software 1.14 version. The molecular docking studies revealed favorable molecular interactions and binding energies. The compounds that showed good docking results were synthesized through wet lab synthesis and further preceded for in vitro anticancer studies. Results: Three compounds are selected for wet lab synthesis due to their good docking results compared to other compounds. The synthesized compounds are subjected to different in vitro anticancer studies and found to be having potential anticancer activity. Conclusion: The pharmacokinetic and docking studies conclude that the triazole compounds have potential as anticancer agents. The in vitro anticancer studies revealed that the triazole derivatives are having high potency of anticancer activity against pancreatic cell lines.

2019 ◽  
Vol 15 (2) ◽  
pp. 257-267 ◽  
Author(s):  
Paritosh Shukla ◽  
Ashok Sharma ◽  
Leena Fageria ◽  
Rajdeep Chowdhury

Background: Cancer being a deadly disease, many reports of new chemical entities are available. Pyranopyrazole (PPZ) compounds have also been disclosed as bioactive molecules but mainly as antimicrobial agents. Based on one previous report and our interest in anticancer drug design, we decided to explore PPZs as anticancer agents. To the best of our knowledge, we found that a comprehensive study, involving synthesis, in-vitro biological activity determination, exploration of the mechanism of inhibition and finally in-silico docking studies, was missing in earlier reports. This is what the present study intends to accomplish. Methods: Ten spiro and eleven non-spiro PPZ molecules were synthesized by environment-friendly multicomponent reaction (MCR) strategy. After subjecting each of the newly synthesized molecules to Hep3b hepatocellular carcinoma cell lines assay, we selectively measured the Optical Density (OD) of the most active ones. Then, the compound exhibiting the best activity was docked against human CHK- 1 protein to get an insight into the binding affinities and a quick structure activity relationship (SAR) of the PPZs. Results: The two series of spiro and non-spiro PPZs were easily synthesized in high yields using microwave assisted synthesis and other methods. Among the synthesized compounds, most compounds showed moderate to good anticancer activity against the MTT assay. After performing the absorbance studies we found that the non-spiro molecules showed better apoptosis results and appeared to bind to DNA causing disruption in their structures. Finally, the docking results of compound 5h (having N,Ndimethylamino substituted moiety) clearly showed good binding affinities as predicted by our experimental findings. Conclusion: The paper describes a comprehensive synthesis, in-vitro and docking studies done on new PPZs. The newly synthesized series of spiro and non-spiro PPZs were found to possess antineoplasmic activity as evinced by the studies on hep3b cells. Also, the UV visible absorbance study gave clues to the possible binding of these molecules to the DNA. Docking studies corroborated well with the experimental results. Thus, these new molecules appear to be potential anticancer agents, but further studies are required to substantiate and elaborate on these findings.


2020 ◽  
Vol 32 (5) ◽  
pp. 1151-1157 ◽  
Author(s):  
P. Raghurama Shetty ◽  
G. Shivaraja ◽  
G. Krishnaswamy ◽  
K. Pruthviraj ◽  
Vivek Chandra Mohan ◽  
...  

In this work, some 2-phenyl quinoline-4-carboxamide derivatives (5a-j) were synthesized via base catalyzed Pfitzinger reaction of isatin and acetophenone followed by C-N coupling reaction using POCl3 and assessed them for their in vitro antimicrobial and anticancer activity. The structure of newly synthesized compound were established by FT-IR, 1H & 13C NMR and Mass spectrometric analysis. The synthesized carboxamides were subjected to preliminary in vitro antibacterial activity as well as for antifungal activity. Results of antibacterial activity were compared with standard antibacterial (ciprofloxocin) and antifungal (fluconozole). Among the tested compounds, 5d, 5f and 5h exhibited promising activity with zone of inhibition ranging from 10 to 25 mm. Further, the anticancer activity determined using MTT assay against two cancer cell lines. Compounds 5b, 5d, 5f and 5h showed good anticancer activity among all the other derivatives. In order to correlate the in vitro results, in silico ADME and Molecular docking studies were carried out for (5a-j). ADME properties results showed that all the compounds obey rule of Five rule except 5a, 5e and 5g compound. Molecular docking studies of the synthesized compounds showed good binding affinity through hydrogen bond interactions with key residues on active sites as well as neighboring residues within the active site of chosen target proteins viz. antibacterial, antifungal and anticancer. Comparison of both results of in silico as well as in vitro investigation suggests that the synthesized compounds may act as potential antimicrobial as well as anticancer agents.


Author(s):  
Priyanka P. Rode ◽  
Akshay R. Yadav ◽  
Ankita V. Chitruk ◽  
Shrinivas K. Mohite ◽  
Chandrakant S. Magdum

A series of novel N-(1H-benzimidazole-2-yl-carbamothioyl)benzamide derivatives were synthesized under microwave irradiation and evaluated for anticancer activity. The synthesized compounds were characterized by IR, 1H-NMR, and mass spectral data. Complexity associated with cancer disease and prevalence of diversified cell populations vindicates highly specific treatment options for treatment of cancer. Resistance to these anticancer agents has posed a great hindrance in successful treatment of cancer. Pondering this ongoing situation, it was speculated to develop novel compounds targeting cancer. All the newly synthesized compounds 3a-f were further evaluated for anticancer activity against MCF-7 cell lines using MTT assay. Molecular docking studies were performed using VLife MDS 4.3 software. The compounds 3c exhibited good docking scores of -60.37. The anticancer and docking results highlight the fact that the synthesized compounds 3c could be considered as possible hit as therapeutic agents. A significant correlation was observed between the in silico and the in vitro studies.


Author(s):  
Gurubasavaraja S.P. Matada ◽  
Nahid Abbas ◽  
Prasad S. Dhiwar ◽  
Rajdeep Basu ◽  
Giles Devasahayam

Background: The abnormal signaling from tyrosine kinase causes many types of cancers namely breast cancer, non-small cell lung cancer, and chronic myeloid leukemia. This research reports the in-silico, synthesis, and in-vitro study of novel pyrimidine derivatives as EGFR inhibitors. Objective: The objective of the research study is to discover more promising lead compounds using drug discovery process, in which the rational drug design is achieved by the molecular docking and virtual pharmacokinetic studies. Methods: The molecular docking studies were carried out using discovery studio 3.5-version software. The molecules with good docking and binding energy score were synthesized as well as their structures were confirmed by FT-IR, NMR, Mass and elemental analysis. Subsequently molecules were evaluated for their anticancer activity using MDA-MB-231, MCF-7 and A431 breast cancer cell lines by MTT and tyrosine kinase assay methodology. Results: Pyrimidine derivatives displayed anticancer activity. Particularly, compound R8 shows significant cytotoxicity against MDA-MB-231 with an IC50 18.5 ± 0.6 µM. Molecular docking studies proved that the compound R8 has good binding fitting by forming hydrogen bonds with amino acid residues at ATP binding sites of EGFR. Conclusion: Eight pyrimidine derivatives were designed, synthesized and evaluated against breast cancer cell lines. Compound R8 significantly inhibited the growth of MDA-MB-231 and MCF-7. Molecular docking studies reveled that compound R8 has good fitting by forming different Hydrogen bonding interactions with amino acids at ATP binding site of epidermal growth factor receptor target. Compound R8 was a promising lead molecule that showed better results as compared to other compounds in in-vitro studies.


2020 ◽  
Vol 16 ◽  
Author(s):  
Bhagwat S. Jadhav ◽  
Vipul P. Purohit ◽  
Ramesh S. Yamgar ◽  
Rajesh S. Kenny ◽  
Suraj N. Mali ◽  
...  

Background: Tuberculosis (TB) continues to be the most threatening cause of death in recent years. There is urgent need of search more potent, less toxic antitubercular agents. Methods: A set of five new 1,3,4-oxadiazolyl-imidazo-1,2-pyridine derivatives (4a-4e) was synthesized and screened invitro for their antibacterial activity against Mycobacterium tuberculosis (H37 RV strain) ATCC No-27294. Results: Compound 4b displayed potent antitubercular activity at MIC 6.25 µg/mL. In-silico molecular docking studies were performed for evaluation of the binding patterns of compounds 4a-4e in the binding site of proteins like, Pantothenate synthatase and enoyl acyl reductase inhibitor. The outcomes of the in- vitro antitubercular studies were in well agreement with the molecular docking studies. These newly synthesized compounds were found to have good ADMET profile. We also explored possible anticancer activity using in-silico methods. Conclusion: These results shows that readily synthesized 1,3,4-oxadiazolyl-imidazo-1,2-pyridine derivatives (4a-4e) are attracting new class of potent anti-TB targets as well as possible anticancer activity that worth additional opportunities for improvements.


Gut Pathogens ◽  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Padikkamannil Abishad ◽  
Pollumahanti Niveditha ◽  
Varsha Unni ◽  
Jess Vergis ◽  
Nitin Vasantrao Kurkure ◽  
...  

Abstract Background In the wake of emergence of antimicrobial resistance, bioactive phytochemical compounds are proving to be important therapeutic agents. The present study envisaged in silico molecular docking as well as in vitro antimicrobial efficacy screening of identified phytochemical ligands to the dispersin (aap) and outer membrane osmoporin (OmpC) domains of enteroaggregative Escherichia coli (EAEC) and non-typhoidal Salmonella spp. (NTS), respectively. Materials and methods The evaluation of drug-likeness, molecular properties, and bioactivity of the identified phytocompounds (thymol, carvacrol, and cinnamaldehyde) was carried out using Swiss ADME, while Protox-II and StopTox servers were used to identify its toxicity. The in silico molecular docking of the phytochemical ligands with the protein motifs of dispersin (PDB ID: 2jvu) and outer membrane osmoporin (PDB ID: 3uu2) were carried out using AutoDock v.4.20. Further, the antimicrobial efficacy of these compounds against multi-drug resistant EAEC and NTS strains was determined by estimating the minimum inhibitory concentrations and minimum bactericidal concentrations. Subsequently, these phytochemicals were subjected to their safety (sheep and human erythrocytic haemolysis) as well as stability (cationic salts, and pH) assays. Results All the three identified phytochemicals ligands were found to be zero violators of Lipinski’s rule of five and exhibited drug-likeness. The compounds tested were categorized as toxicity class-4 by Protox-II and were found to be non- cardiotoxic by StopTox. The docking studies employing 3D model of dispersin and ompC motifs with the identified phytochemical ligands exhibited good binding affinity. The identified phytochemical compounds were observed to be comparatively stable at different conditions (cationic salts, and pH); however, a concentration-dependent increase in the haemolytic assay was observed against sheep as well as human erythrocytes. Conclusions In silico molecular docking studies provided useful insights to understand the interaction of phytochemical ligands with protein motifs of pathogen and should be used routinely before the wet screening of any phytochemicals for their antibacterial, stability, and safety aspects.


2020 ◽  
Vol 32 (6) ◽  
pp. 1482-1490
Author(s):  
Manju Mathew ◽  
Raja Chinnamanayakar ◽  
Ezhilarasi Muthuvel Ramanathan

A series of 1-(5-(5-(4-chlorophenyl)furan-2-yl)-4,5-dihyropyrazol-1-yl ethanone (5a-h) was synthesized through E-(3-(5-(4-chloro-phenyl)furan-2-yl)-1-phenylprop-2-en-1-one (3a-h) with hydrazine monohydrate and sodium acetate. Totally, eight compounds were synthesized and their structures were elucidated by infrared, 1H & 13C NMR, elemental analysis, antimicrobial studies, in silico molecular docking studies and also in silico ADME prediction. Antimicrobial studies of the synthesized compounds showed good to moderate activity against the all the stains compared with standard drugs. in silico Molecular docking study was carried out using bacterial protein and BC protein. Synthesized compounds (5a-h) showed good docking score compared with ciprofloxacin. Antimicrobial study was carried out for 4-chlorophenyl furfuran pyrazole derivatives (5a-h). The results of assessment of toxicities, drug likeness and drug score profiles of compounds (5a-j) are promising


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Lamya H. Al-Wahaibi ◽  
Hanaa M. Abu-Melha ◽  
Diaa A. Ibrahim

A series of novel coumarin derivatives carrying 1,2,4-triazole or 1,2,4-triazolo[3,4-b][1,3,4]thiadiazole moieties were prepared and evaluated in vitro as anticancer in the human colon cancer (HCT116) cell line. The derivatives 4c and 8c exhibited marked anticancer activity with IC50 values 4.363 and 2.656 µM, respectively. The molecular docking studies suggested possible interaction with tyrosine kinases (CDK2).


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1789 ◽  
Author(s):  
Julia Krzywik ◽  
Witold Mozga ◽  
Maral Aminpour ◽  
Jan Janczak ◽  
Ewa Maj ◽  
...  

Colchicine is a well-known compound with strong antiproliferative activity that has had limited use in chemotherapy because of its toxicity. In order to create more potent anticancer agents, a series of novel colchicine derivatives have been obtained by simultaneous modification at C7 (amides and sulfonamides) and at C10 (methylamino group) positions and characterized by spectroscopic methods. All the synthesized compounds have been tested in vitro to evaluate their cytotoxicity toward A549, MCF-7, LoVo, LoVo/DX and BALB/3T3 cell lines. Additionally, the activity of the studied compounds was investigated using computational methods involving molecular docking of the colchicine derivatives to β-tubulin. The majority of the obtained derivatives exhibited higher cytotoxicity than colchicine, doxorubicin or cisplatin against tested cancer cell lines. Furthermore, molecular modeling studies of the obtained compounds revealed their possible binding modes into the colchicine binding site of tubulin.


Sign in / Sign up

Export Citation Format

Share Document