scholarly journals Cross-Talk Between Ionic and Nanoribbon Current Signals in Graphene Nanoribbon-Nanopore Sensors for Single-Molecule Detection

Small ◽  
2015 ◽  
Vol 11 (47) ◽  
pp. 6309-6316 ◽  
Author(s):  
Matthew Puster ◽  
Adrian Balan ◽  
Julio A. Rodríguez-Manzo ◽  
Gopinath Danda ◽  
Jae-Hyuk Ahn ◽  
...  
2012 ◽  
Vol 229-231 ◽  
pp. 197-200
Author(s):  
Xiu Hua Sun ◽  
Chang Lu Gao ◽  
Li Qun Gu

The molecular-scale pore structure, called nanopore, interacting with target molecules in its functionalized lumen, can produce characteristic changes in the pore conductance, which allows us to identify single molecules and simultaneously quantify each target species in the mixture. Nanopore sensors have been created for tremendous biomedical detections, with targets ranging from metal ions, drug compounds and cellular second messengers, to proteins and DNAs. Here we will review our recent discoveries with a lab-in-hand glass nanopore: single-molecule discrimination of chiral enantiomers with a trapped cyclodextrin, sensing of bioterrorist agent ricin and site-directed capturing a single nanoparticle.


2021 ◽  
Author(s):  
Li-juan Wang ◽  
Le Liang ◽  
Bing-jie Liu ◽  
BingHua Jiang ◽  
Chun-yang Zhang

A controlled T7 transcription-driven symmetric amplification cascade machinery is developed for single-molecule detection of multiple repair glycosylases.


Author(s):  
Xiaojia Jiang ◽  
Mingsong Zang ◽  
Fei Li ◽  
Chunxi Hou ◽  
Quan Luo ◽  
...  

Biological nanopore-based techniques have attracted more and more attention recently in the field of single-molecule detection, because they allow the real-time, sensitive, high-throughput analysis. Herein, we report an engineered biological...


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1942
Author(s):  
Xiaoqing Zeng ◽  
Yang Xiang ◽  
Qianshan Liu ◽  
Liang Wang ◽  
Qianyun Ma ◽  
...  

Protein is an important component of all the cells and tissues of the human body and is the material basis of life. Its content, sequence, and spatial structure have a great impact on proteomics and human biology. It can reflect the important information of normal or pathophysiological processes and promote the development of new diagnoses and treatment methods. However, the current techniques of proteomics for protein analysis are limited by chemical modifications, large sample sizes, or cumbersome operations. Solving this problem requires overcoming huge challenges. Nanopore single molecule detection technology overcomes this shortcoming. As a new sensing technology, it has the advantages of no labeling, high sensitivity, fast detection speed, real-time monitoring, and simple operation. It is widely used in gene sequencing, detection of peptides and proteins, markers and microorganisms, and other biomolecules and metal ions. Therefore, based on the advantages of novel nanopore single-molecule detection technology, its application to protein sequence detection and structure recognition has also been proposed and developed. In this paper, the application of nanopore single-molecule detection technology in protein detection in recent years is reviewed, and its development prospect is investigated.


1994 ◽  
Vol 33 (Part 1, No. 3A) ◽  
pp. 1571-1576 ◽  
Author(s):  
Mitsuru Ishikawa ◽  
Ken-ichi Hirano ◽  
Tsuyoshi Hayakawa ◽  
Shigeru Hosoi ◽  
Sydney Brenner

Sign in / Sign up

Export Citation Format

Share Document