Stimuli-Responsive Self-Assembled DNA Nanomaterials for Biomedical Applications

Small ◽  
2016 ◽  
Vol 13 (7) ◽  
pp. 1602881 ◽  
Author(s):  
Ziwen Dai ◽  
Hoi Man Leung ◽  
Pik Kwan Lo
2021 ◽  
Vol 22 (23) ◽  
pp. 12662
Author(s):  
Sara La Manna ◽  
Concetta Di Natale ◽  
Valentina Onesto ◽  
Daniela Marasco

Self-assembling peptides could be considered a novel class of agents able to harvest an array of micro/nanostructures that are highly attractive in the biomedical field. By modifying their amino acid composition, it is possible to mime several biological functions; when assembled in micro/nanostructures, they can be used for a variety of purposes such as tissue regeneration and engineering or drug delivery to improve drug release and/or stability and to reduce side effects. Other significant advantages of self-assembled peptides involve their biocompatibility and their ability to efficiently target molecular recognition sites. Due to their intrinsic characteristics, self-assembled peptide micro/nanostructures are capable to load both hydrophobic and hydrophilic drugs, and they are suitable to achieve a triggered drug delivery at disease sites by inserting in their structure’s stimuli-responsive moieties. The focus of this review was to summarize the most recent and significant studies on self-assembled peptides with an emphasis on their application in the biomedical field.


2021 ◽  
Author(s):  
Santanu Panja ◽  
Dave J. Adams

Stimuli responsive dynamic changes in the networks of self-assembled gels result in an alteration of physical and chemical properties of the gel with time.


Author(s):  
Ranhua Xiong ◽  
Ronald X. Xu ◽  
Chaobo Huang ◽  
Stefaan De Smedt ◽  
Kevin Braeckmans

This review presents an overview of the recent advances in the development of stimuli-responsive nanobubbles and their novel biomedical applications including bio-imaging, drug delivery and ablation of tumor tissues.


Nano Today ◽  
2021 ◽  
Vol 38 ◽  
pp. 101119
Author(s):  
Masoud Delfi ◽  
Rossella Sartorius ◽  
Milad Ashrafizadeh ◽  
Esmaeel Sharifi ◽  
Yapei Zhang ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Udisha Singh ◽  
Vinod Morya ◽  
Bhaskar Datta ◽  
Chinmay Ghoroi ◽  
Dhiraj Bhatia

Of the multiple areas of applications of DNA nanotechnology, stimuli-responsive nanodevices have emerged as an elite branch of research owing to the advantages of molecular programmability of DNA structures and stimuli-responsiveness of motifs and DNA itself. These classes of devices present multiples areas to explore for basic and applied science using dynamic DNA nanotechnology. Herein, we take the stake in the recent progress of this fast-growing sub-area of DNA nanotechnology. We discuss different stimuli, motifs, scaffolds, and mechanisms of stimuli-responsive behaviours of DNA nanodevices with appropriate examples. Similarly, we present a multitude of biological applications that have been explored using DNA nanodevices, such as biosensing, in vivo pH-mapping, drug delivery, and therapy. We conclude by discussing the challenges and opportunities as well as future prospects of this emerging research area within DNA nanotechnology.


Sign in / Sign up

Export Citation Format

Share Document