scholarly journals Stimuli responsive dynamic transformations in supramolecular gels

2021 ◽  
Author(s):  
Santanu Panja ◽  
Dave J. Adams

Stimuli responsive dynamic changes in the networks of self-assembled gels result in an alteration of physical and chemical properties of the gel with time.

2019 ◽  
Vol 10 (42) ◽  
pp. 5686-5720 ◽  
Author(s):  
Amin Abdollahi ◽  
Hossein Roghani-Mamaqani ◽  
Bahareh Razavi ◽  
Mehdi Salami-Kalajahi

Light-controlling of phase separation in temperature-responsive polymer solutions by using light-responsive materials for reversible controlling physical and chemical properties of the media with an out-of-system stimulus with tunable intensity.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2389
Author(s):  
Tiantian Wei ◽  
Jingjing Wu ◽  
Xiran Shen ◽  
Zhifeng Qiu ◽  
Li Guo

Sequentially defined membrane-like nanomaterials have potential applications in biomedical and chemical fields due to their unique physical and chemical properties. However, these natural and synthetic nanomaterials have not been widely developed due to their complicated molecular sequence and structure, difficulties in synthesis etc. Here, we report a stable membrane-like nanomaterial composed of a monolayer or bilayer that was self-assembled from sequence-defined amphiphilic peptoid triblock (poly(N-aminoethyl glycine)-b-poly(N-octyl glycine)-b-poly(N-carboxyethyl glycine)) and diblock (poly(N-carboxyethyl glycine)-b-poly(N-octyl glycine) and poly(N-aminoethyl glycine)-b-poly(N-octyl glycine)) copolymers separately. A series of peptoid block copolymers were synthesized, and it was observed that long alkyl side chains and abundant hydrophobic blocks were necessary to form the membranes. The prepared membrane-like nanomaterials were fairly stable. They did not change obviously in shape and size with time, and they can survive after sonication. This study is expected to enrich the nanomaterial family, as well as polypeptoid science, and expand their applications in biomedicine and other fields.


1966 ◽  
Vol 24 ◽  
pp. 101-110
Author(s):  
W. Iwanowska

In connection with the spectrophotometric study of population-type characteristics of various kinds of stars, a statistical analysis of kinematical and distribution parameters of the same stars is performed at the Toruń Observatory. This has a twofold purpose: first, to provide a practical guide in selecting stars for observing programmes, second, to contribute to the understanding of relations existing between the physical and chemical properties of stars and their kinematics and distribution in the Galaxy.


2017 ◽  
pp. 31-43
Author(s):  
Berta Ratilla ◽  
Loreme Cagande ◽  
Othello Capuno

Organic farming is one of the management strategies that improve productivity of marginal uplands. The study aimed to: (1) evaluate effects of various organic-based fertilizers on the growth and yield of corn; (2) determine the appropriate combination for optimum yield; and (3) assess changes on the soil physical and chemical properties. Experiment was laid out in Randomized Complete Block Design, with 3 replications and 7 treatments, namely; T0=(0-0-0); T1=1t ha-1 Evans + 45-30-30kg N, P2O5, K2O ha-1; T2=t ha-1 Wellgrow + 45-30-30kg N, P2O5, K2O ha-1; T3=15t ha-1 chicken dung; T4=10t ha-1 chicken dung + 45-30-30kg N, P2O5, K2O ha-1; T5=15t ha-1 Vermicast; and T6=10t ha-1 Vermicast + 45-30-30kg N, P2O5, K2O ha-1. Application of organic-based fertilizers with or without inorganic fertilizers promoted growth of corn than the control. But due to high infestation of corn silk beetle(Monolepta bifasciata Horns), its grain yield was greatly affected. In the second cropping, except for Evans, any of these fertilizers applied alone or combined with 45-30-30kg N, P2O5, K2O ha-1 appeared appropriate in increasing corn earyield. Soil physical and chemical properties changed with addition of organic fertilizers. While bulk density decreased irrespective of treatments, pH, total N, available P and exchangeable K generally increased more with chicken dung application.


Sign in / Sign up

Export Citation Format

Share Document