Highly Sensitive Strain Sensors Based on Molecules–Gold Nanoparticles Networks for High‐Resolution Human Pulse Analysis

Small ◽  
2021 ◽  
Vol 17 (8) ◽  
pp. 2007593
Author(s):  
Chang‐Bo Huang ◽  
Yifan Yao ◽  
Verónica Montes‐García ◽  
Marc‐Antoine Stoeckel ◽  
Miriam Von Holst ◽  
...  
Small ◽  
2021 ◽  
Vol 17 (8) ◽  
pp. 2170031
Author(s):  
Chang‐Bo Huang ◽  
Yifan Yao ◽  
Verónica Montes‐García ◽  
Marc‐Antoine Stoeckel ◽  
Miriam Von Holst ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1701
Author(s):  
Ken Suzuki ◽  
Ryohei Nakagawa ◽  
Qinqiang Zhang ◽  
Hideo Miura

In this study, a basic design of area-arrayed graphene nanoribbon (GNR) strain sensors was proposed to realize the next generation of strain sensors. To fabricate the area-arrayed GNRs, a top-down approach was employed, in which GNRs were cut out from a large graphene sheet using an electron beam lithography technique. GNRs with widths of 400 nm, 300 nm, 200 nm, and 50 nm were fabricated, and their current-voltage characteristics were evaluated. The current values of GNRs with widths of 200 nm and above increased linearly with increasing applied voltage, indicating that these GNRs were metallic conductors and a good ohmic junction was formed between graphene and the electrode. There were two types of GNRs with a width of 50 nm, one with a linear current–voltage relationship and the other with a nonlinear one. We evaluated the strain sensitivity of the 50 nm GNR exhibiting metallic conduction by applying a four-point bending test, and found that the gauge factor of this GNR was about 50. Thus, GNRs with a width of about 50 nm can be used to realize a highly sensitive strain sensor.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Chan-Jae Lee ◽  
Keum Hwan Park ◽  
Chul Jong Han ◽  
Min Suk Oh ◽  
Banseok You ◽  
...  

2018 ◽  
Vol 29 (23) ◽  
pp. 235501 ◽  
Author(s):  
Yang Gao ◽  
Xiaoliang Fang ◽  
Jianping Tan ◽  
Ting Lu ◽  
Likun Pan ◽  
...  

Synlett ◽  
2021 ◽  
Author(s):  
Chao Lu ◽  
Xi Chen

Flexible strain sensors with superior flexibility and high sensitivity are critical to artificial intelligence. And it is favorable to develop highly sensitive strain sensors with simple and cost effective method. Here, we have prepared carbon nanotubes enhanced thermal polyurethane nanocomposites with good mechanical and electrical properties for fabrication of highly sensitive strain sensors. The nanomaterials have been prepared through simple but effective solvent evaporation method, and the cheap polyurethane has been utilized as main raw materials. Only a small quantity of carbon nanotubes with mass content of 5% has been doped into polyurethane matrix with purpose of enhancing mechanical and electrical properties of the nanocomposites. As a result, the flexible nanocomposite films present highly sensitive resistance response under external strain stimulus. The strain sensors based on these flexible composite films deliver excellent sensitivity and conformality under mechanical conditions, and detect finger movements precisely under different bending angles.


2019 ◽  
Vol 4 (9) ◽  
pp. 1900309 ◽  
Author(s):  
Yangchengyi Liu ◽  
Hanghai Fan ◽  
Kan Li ◽  
Nie Zhao ◽  
Shangda Chen ◽  
...  

Nanoscale ◽  
2018 ◽  
Vol 10 (22) ◽  
pp. 10479-10487 ◽  
Author(s):  
H. Nesser ◽  
J. Grisolia ◽  
T. Alnasser ◽  
B. Viallet ◽  
L. Ressier

Highly sensitive capacitive strain sensors based on colloidal gold nanoparticles are designed, produced and characterized in order to address wireless applications.


2017 ◽  
Vol 5 (40) ◽  
pp. 10571-10577 ◽  
Author(s):  
Fengling Chen ◽  
Yousong Gu ◽  
Shiyao Cao ◽  
Yong Li ◽  
Feng Li ◽  
...  

Novel, flexible and highly sensitive strain sensors were fabricated using graphite granular films by low-cost carbon-evaporation.


2015 ◽  
Vol 25 (16) ◽  
pp. 2395-2401 ◽  
Author(s):  
Xinqin Liao ◽  
Qingliang Liao ◽  
Xiaoqin Yan ◽  
Qijie Liang ◽  
Haonan Si ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document