Flexible resistance-type strain sensors toward monitoring finger movements

Synlett ◽  
2021 ◽  
Author(s):  
Chao Lu ◽  
Xi Chen

Flexible strain sensors with superior flexibility and high sensitivity are critical to artificial intelligence. And it is favorable to develop highly sensitive strain sensors with simple and cost effective method. Here, we have prepared carbon nanotubes enhanced thermal polyurethane nanocomposites with good mechanical and electrical properties for fabrication of highly sensitive strain sensors. The nanomaterials have been prepared through simple but effective solvent evaporation method, and the cheap polyurethane has been utilized as main raw materials. Only a small quantity of carbon nanotubes with mass content of 5% has been doped into polyurethane matrix with purpose of enhancing mechanical and electrical properties of the nanocomposites. As a result, the flexible nanocomposite films present highly sensitive resistance response under external strain stimulus. The strain sensors based on these flexible composite films deliver excellent sensitivity and conformality under mechanical conditions, and detect finger movements precisely under different bending angles.

Nanoscale ◽  
2018 ◽  
Vol 10 (28) ◽  
pp. 13599-13606 ◽  
Author(s):  
Binghao Liang ◽  
Zhiqiang Lin ◽  
Wenjun Chen ◽  
Zhongfu He ◽  
Jing Zhong ◽  
...  

A highly stretchable and sensitive strain sensor based on a gradient carbon nanotube was developed. The strain sensors show an unprecedented combination of both high sensitivity (gauge factor = 13.5) and ultra-stretchability (>550%).


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1701
Author(s):  
Ken Suzuki ◽  
Ryohei Nakagawa ◽  
Qinqiang Zhang ◽  
Hideo Miura

In this study, a basic design of area-arrayed graphene nanoribbon (GNR) strain sensors was proposed to realize the next generation of strain sensors. To fabricate the area-arrayed GNRs, a top-down approach was employed, in which GNRs were cut out from a large graphene sheet using an electron beam lithography technique. GNRs with widths of 400 nm, 300 nm, 200 nm, and 50 nm were fabricated, and their current-voltage characteristics were evaluated. The current values of GNRs with widths of 200 nm and above increased linearly with increasing applied voltage, indicating that these GNRs were metallic conductors and a good ohmic junction was formed between graphene and the electrode. There were two types of GNRs with a width of 50 nm, one with a linear current–voltage relationship and the other with a nonlinear one. We evaluated the strain sensitivity of the 50 nm GNR exhibiting metallic conduction by applying a four-point bending test, and found that the gauge factor of this GNR was about 50. Thus, GNRs with a width of about 50 nm can be used to realize a highly sensitive strain sensor.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Waris Obitayo ◽  
Tao Liu

The use of carbon nanotubes for piezoresistive strain sensors has acquired significant attention due to its unique electromechanical properties. In this comprehensive review paper, we discussed some important aspects of carbon nanotubes for strain sensing at both the nanoscale and macroscale. Carbon nanotubes undergo changes in their band structures when subjected to mechanical deformations. This phenomenon makes them applicable for strain sensing applications. This paper signifies the type of carbon nanotubes best suitable for piezoresistive strain sensors. The electrical resistivities of carbon nanotube thin film increase linearly with strain, making it an ideal material for a piezoresistive strain sensor. Carbon nanotube composite films, which are usually fabricated by mixing small amounts of single-walled or multiwalled carbon nanotubes with selected polymers, have shown promising characteristics of piezoresistive strain sensors. Studies also show that carbon nanotubes display a stable and predictable voltage response as a function of temperature.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Chan-Jae Lee ◽  
Keum Hwan Park ◽  
Chul Jong Han ◽  
Min Suk Oh ◽  
Banseok You ◽  
...  

2018 ◽  
Vol 25 (08) ◽  
pp. 1850121
Author(s):  
LI YUAN ◽  
XUZHENG QIAN ◽  
CHUNYAN ZENG ◽  
CHEN GAO ◽  
YUE LU

TiC particles/Ag composite films were successfully prepared through co-electrodeposition, using the Ag plating solutions with minor addition of TiC particles, followed by heat treatment in vacuum. The X-ray diffractometer (XRD), scanning electron microscope (SEM), nanoindentation tester and four-point probes were used to characterize phase composition, morphologies, mechanical properties and electrical properties of as-fabricated films, respectively. Experimental results show that only TiC and Ag phases are identified for the TiC particles/Ag composite films. TiC particles are incorporated tightly and evenly on the surface of the composite films without obvious agglomeration. TiC particles/Ag composite films maintain good electrical conductivity. Meanwhile, compared to pure silver film without the addition of TiC particles, the indentation hardness ([Formula: see text]) of the TiC/Ag composite film electrodeposited from the plating bath containing 6[Formula: see text]g/L of TiC particles can be improved from 600 [Formula: see text] to 11,000 [Formula: see text].


2021 ◽  
Vol 19 (2) ◽  
pp. 271
Author(s):  
Yu-Ting Zuo ◽  
Hong-Jun Liu

Graphene and carbon nanotubes have a Steiner minimum tree structure, which endows them with extremely good mechanical and electronic properties. A modified Hall-Petch effect is proposed to reveal the enhanced mechanical strength of the SiC/graphene composites, and a fractal approach to its mechanical analysis is given.  Fractal laws for the electrical conductivity of graphene, carbon nanotubes and graphene/SiC composites are suggested using the two-scale fractal theory. The Steiner structure is considered as a cascade of a fractal pattern. The theoretical results show that the two-scale fractal dimensions and the graphene concentration play an important role in enhancing the mechanical and electrical properties of graphene/SiC composites. This paper sheds a bright light on a new era of the graphene-based materials.


2011 ◽  
Vol 22 (18) ◽  
pp. 2155-2159 ◽  
Author(s):  
Y. Miao ◽  
L. Chen ◽  
Y. Lin ◽  
R. Sammynaiken ◽  
W. J. Zhang

The use of carbon nanotubes (CNTs) for construction of sensors is promising. This is due to some unique characteristics of CNTs. In recent years, strain sensors built from CNT composite films have been developed; however, their low piezoresistive sensitivity (gauge factor (GF)) in in-plane strain detection is a concern compared with other strain sensors. This article reports an experimental discovery of the superior piezoresistive response of a CNT film that is free of surfactants, known as the pure CNT film. The mechanism for the high GF with the pure CNT film strain sensors is also discussed.


Sign in / Sign up

Export Citation Format

Share Document