Design and performance analysis of various feature selection methods for anomaly-based techniques in intrusion detection system

2019 ◽  
Vol 2 (1) ◽  
pp. e56 ◽  
Author(s):  
Sushant Kumar Pandey
Cybersecurity ◽  
2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Raisa Abedin Disha ◽  
Sajjad Waheed

AbstractTo protect the network, resources, and sensitive data, the intrusion detection system (IDS) has become a fundamental component of organizations that prevents cybercriminal activities. Several approaches have been introduced and implemented to thwart malicious activities so far. Due to the effectiveness of machine learning (ML) methods, the proposed approach applied several ML models for the intrusion detection system. In order to evaluate the performance of models, UNSW-NB 15 and Network TON_IoT datasets were used for offline analysis. Both datasets are comparatively newer than the NSL-KDD dataset to represent modern-day attacks. However, the performance analysis was carried out by training and testing the Decision Tree (DT), Gradient Boosting Tree (GBT), Multilayer Perceptron (MLP), AdaBoost, Long-Short Term Memory (LSTM), and Gated Recurrent Unit (GRU) for the binary classification task. As the performance of IDS deteriorates with a high dimensional feature vector, an optimum set of features was selected through a Gini Impurity-based Weighted Random Forest (GIWRF) model as the embedded feature selection technique. This technique employed Gini impurity as the splitting criterion of trees and adjusted the weights for two different classes of the imbalanced data to make the learning algorithm understand the class distribution. Based upon the importance score, 20 features were selected from UNSW-NB 15 and 10 features from the Network TON_IoT dataset. The experimental result revealed that DT performed well with the feature selection technique than other trained models of this experiment. Moreover, the proposed GIWRF-DT outperformed other existing methods surveyed in the literature in terms of the F1 score.


2020 ◽  
pp. 1-20
Author(s):  
K. Muthamil Sudar ◽  
P. Deepalakshmi

Software-defined networking is a new paradigm that overcomes problems associated with traditional network architecture by separating the control logic from data plane devices. It also enhances performance by providing a highly-programmable interface that adapts to dynamic changes in network policies. As software-defined networking controllers are prone to single-point failures, providing security is one of the biggest challenges in this framework. This paper intends to provide an intrusion detection mechanism in both the control plane and data plane to secure the controller and forwarding devices respectively. In the control plane, we imposed a flow-based intrusion detection system that inspects every new incoming flow towards the controller. In the data plane, we assigned a signature-based intrusion detection system to inspect traffic between Open Flow switches using port mirroring to analyse and detect malicious activity. Our flow-based system works with the help of trained, multi-layer machine learning-based classifier, while our signature-based system works with rule-based classifiers using the Snort intrusion detection system. The ensemble feature selection technique we adopted in the flow-based system helps to identify the prominent features and hasten the classification process. Our proposed work ensures a high level of security in the Software-defined networking environment by working simultaneously in both control plane and data plane.


2021 ◽  
Vol 336 ◽  
pp. 08008
Author(s):  
Tao Xie

In order to improve the detection rate and speed of intrusion detection system, this paper proposes a feature selection algorithm. The algorithm uses information gain to rank the features in descending order, and then uses a multi-objective genetic algorithm to gradually search the ranking features to find the optimal feature combination. We classified the Kddcup98 dataset into five classes, DOS, PROBE, R2L, and U2R, and conducted numerous experiments on each class. Experimental results show that for each class of attack, the proposed algorithm can not only speed up the feature selection, but also significantly improve the detection rate of the algorithm.


2021 ◽  
Author(s):  
Navroop Kaur ◽  
Meenakshi Bansal ◽  
Sukhwinder Singh S

Abstract In modern times the firewall and antivirus packages are not good enough to protect the organization from numerous cyber attacks. Computer IDS (Intrusion Detection System) is a crucial aspect that contributes to the success of an organization. IDS is a software application responsible for scanning organization networks for suspicious activities and policy rupturing. IDS ensures the secure and reliable functioning of the network within an organization. IDS underwent huge transformations since its origin to cope up with the advancing computer crimes. The primary motive of IDS has been to augment the competence of detecting the attacks without endangering the performance of the network. The research paper elaborates on different types and different functions performed by the IDS. The NSL KDD dataset has been considered for training and testing. The seven prominent classifiers LR (Logistic Regression), NB (Naïve Bayes), DT (Decision Tree), AB (AdaBoost), RF (Random Forest), kNN (k Nearest Neighbor), and SVM (Support Vector Machine) have been studied along with their pros and cons and the feature selection have been imposed to enhance the reading of performance evaluation parameters (Accuracy, Precision, Recall, and F1Score). The paper elaborates a detailed flowchart and algorithm depicting the procedure to perform feature selection using XGB (Extreme Gradient Booster) for four categories of attacks: DoS (Denial of Service), Probe, R2L (Remote to Local Attack), and U2R (User to Root Attack). The selected features have been ranked as per their occurrence. The implementation have been conducted at five different ratios of 60-40%, 70-30%, 90-10%, 50-50%, and 80-20%. Different classifiers scored best for different performance evaluation parameters at different ratios. NB scored with the best Accuracy and Recall values. DT and RF consistently performed with high accuracy. NB, SVM, and kNN achieved good F1Score.


Sign in / Sign up

Export Citation Format

Share Document