Physical Properties and Chemical Structure of High-Amylose Corn Starch Fractions

1964 ◽  
Vol 16 (11) ◽  
pp. 345-351 ◽  
Author(s):  
Edna M. Montgomery ◽  
K. R. Sexson ◽  
R. J. Dimler ◽  
F. R. Senti
LWT ◽  
2002 ◽  
Vol 35 (8) ◽  
pp. 680-686 ◽  
Author(s):  
S.Y. Ryu ◽  
J.W. Rhim ◽  
H.J. Roh ◽  
S.S. Kim

1961 ◽  
Vol 13 (6) ◽  
pp. 215-222 ◽  
Author(s):  
Edna M. Montgomery ◽  
K. R. Sexson ◽  
F. R. Senti
Keyword(s):  

2021 ◽  
Vol 69 (8) ◽  
pp. 2493-2500
Author(s):  
Yiyuan Zou ◽  
Chao Yuan ◽  
Bo Cui ◽  
Haojie Sha ◽  
Pengfei Liu ◽  
...  

2011 ◽  
Vol 17 (4) ◽  
pp. 279-291 ◽  
Author(s):  
D. Sabanis ◽  
C. Tzia

Addition of hydrocolloids (H/C) in gluten-free (GF) bread formulation is necessary in order to act as polymeric substances that should mimic the viscoelastic properties of gluten and increase the dough’s gas-retaining ability. The properties of H/C vary depending on their origin and chemical structure. Addition of H/C (hydroxypropylmethylcellulose (HPMC), xanthan, κ-carrageenan and guar gum) of different origins at 1%, 1.5% and 2% (w/w) in GF formulations based on corn starch and rice flour was carried out to investigate the effects on dough rheology and bread quality. The consistency, viscosity and thermal properties of doughs were evaluated. According to results, 1% and 1.5% addition of H/C (except from xanthan) contributed to bread with higher loaf volume and better color compared to control GF bread as well as to increased shelf life due to its moisture-absorption ability. Sensory evaluation by a trained panel revealed a preference for bread containing 1.5% HPMC because of its loaf volume, appearance and firmness characteristics. The micrographs of the dough showed a continuous matrix between starch and HPMC obtaining a more aerated structure.


2007 ◽  
Vol 21 (1) ◽  
pp. 29-34 ◽  
Author(s):  
Cláudio Maniglia-Ferreira ◽  
Eduardo Diogo Gurgel-Filho ◽  
João Batista Araújo Silva Jr ◽  
Regina Célia Monteiro de Paula ◽  
Judith Pessoa Andrade Feitosa ◽  
...  

This study was undertaken to explore the effect of heating on gutta-percha, analyzing the occurrence of endothermic peaks corresponding to the transformation that occurs in the crystalline structure of the polymer during thermal manipulation. This study also seeked to determine the temperature at which these peaks occur, causing a transformation from the beta- to the alpha-form, and from the alpha- to the amorphous phase. Eight nonstandardized gutta-percha points commercially available in Brazil (Konne, Tanari, Endopoint, Odous, Dentsply 0.04, Dentsply 0.06, Dentsply TP, Dentsply FM) and pure gutta-percha (control) were analysed using differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA). The transition temperatures were determined and analysed. With the exception of Dentsply 0.04 and Dentsply 0.06, the majority of the products showed thermal behaviour typical of beta-gutta-percha, with two endothermic peaks, exhibiting two crystalline transformations upon heating from ambient temperature to 130°. Upon cooling and reheating, few samples presented two endothermic peaks. It was concluded that heating dental gutta-percha to 130°C causes changes to its chemical structure which permanently alter its physical properties.


1969 ◽  
Vol 42 (3) ◽  
pp. 924-935 ◽  
Author(s):  
T. Colclough ◽  
J. I. Cunneen ◽  
G. M. C. Hrggins

Abstract A natural rubber vulcanizate containing almost entirely monosulfidic crosslinks was oxidized in oxygen and with tert-butyl hydroperoxide. The changes in physical properties due to oxidation were followed by stress—strain measurements, and the changes in chemical structure were investigated with chemical probes, and by spectroscopic methods. The results show that when the oxidized vulcanizates are heated at 75° C, the monosulfidic crosslinks are broken, that crosslinks containing two sulfur atoms are formed, and that conjugated diene and triene structures are introduced into the main polyisoprene chains.


2018 ◽  
Vol 95 (6) ◽  
pp. 838-848 ◽  
Author(s):  
Jiwoon Park ◽  
Shin-Joung Rho ◽  
Yong-Ro Kim
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document