scholarly journals Alternative Generation of CNS Neural Stem Cells and PNS Derivatives from Neural Crest-Derived Peripheral Stem Cells

Stem Cells ◽  
2015 ◽  
Vol 33 (2) ◽  
pp. 574-588 ◽  
Author(s):  
Marlen Weber ◽  
Galina Apostolova ◽  
Darius Widera ◽  
Michel Mittelbronn ◽  
Georg Dechant ◽  
...  
Author(s):  
Rui-fang Li ◽  
Guo-xin Nan ◽  
Dan Wang ◽  
Chang Gao ◽  
Juan Yang ◽  
...  

Background: The specific effect of SV40T on neurocytes has been rarely investigated by the researchers. We transfected Schwann cells (SCs) that did not have differentiation ability with MPH 86 plasmid containing SV40T in order to explore the effects of SV40T on Schwann cells.Methods: SCs were transfected with MPH 86 plasmid carrying the SV40T gene and cultured in different media, as well as co-cultured with neural stem cells (NSCs). In our study, SCs overexpressing SV40T were defined as SV40T-SCs. The proliferation of these cells was detected by WST-1, and the expression of different biomarkers was analyzed by qPCR and immunohistochemistry. Results: SV40T induced the characteristics of NSCs, such as the ability to grow in suspension, form spheroid colonies and proliferate rapidly, in the SCs, which were reversed by knocking out SV40T by the Flip-adenovirus. In addition, SV40T upregulated the expressions of neural crest-associated markers Nestin, Pax3 and Slug, and down-regulated S100b as well as the markers of mature SCs MBP, GFAP and Olig1/2. These cells also expressed NSC markers like Nestin, Sox2, CD133 and SSEA-1, as well as early development markers of embryonic stem cells (ESCs) like BMP4, c-Myc, OCT4 and Gbx2. Co-culturing with NSCs induced differentiation of the SV40T-SCs into neuronal and glial cells. Conclusions: SV40T reprograms Schwann cells to stem-like cells at the stage of neural crest cells (NCCs) that can differentiate to neurocytes.


2018 ◽  
Vol 115 (31) ◽  
pp. E7351-E7360 ◽  
Author(s):  
Laura Kerosuo ◽  
Pushpa Neppala ◽  
Jenny Hsin ◽  
Sofie Mohlin ◽  
Felipe Monteleone Vieceli ◽  
...  

Neuroblastoma is a neural crest-derived childhood tumor of the peripheral nervous system in which MycN amplification is a hallmark of poor prognosis. Here we show that MycN is expressed together with phosphorylation-stabilizing factor CIP2A in regions of the neural plate destined to form the CNS, but MycN is excluded from the neighboring neural crest stem cell domain. Interestingly, ectopic expression of MycN or CIP2A in the neural crest domain biases cells toward CNS-like neural stem cells that express Sox2. Consistent with this, some forms of neuroblastoma have been shown to share transcriptional resemblance with CNS neural stem cells. As high MycN/CIP2A levels correlate with poor prognosis, we posit that a MycN/CIP2A-mediated cell-fate bias may reflect a possible mechanism underlying early priming of some aggressive forms of neuroblastoma. In contrast to MycN, its paralogue cMyc is normally expressed in the neural crest stem cell domain and typically is associated with better overall survival in clinical neuroblastoma, perhaps reflecting a more “normal” neural crest-like state. These data suggest that priming for some forms of aggressive neuroblastoma may occur before neural crest emigration from the CNS and well before sympathoadrenal specification.


Sign in / Sign up

Export Citation Format

Share Document