scholarly journals Human Mesenchymal Stem Cell-Derived Microvesicles Prevent the Rupture of Intracranial Aneurysm in Part by Suppression of Mast Cell Activation via a PGE2-Dependent Mechanism

Stem Cells ◽  
2016 ◽  
Vol 34 (12) ◽  
pp. 2943-2955 ◽  
Author(s):  
Jia Liu ◽  
Atsushi Kuwabara ◽  
Yoshinobu Kamio ◽  
Shuling Hu ◽  
Jeonghyun Park ◽  
...  
Author(s):  
Kyung-Ah Cho ◽  
Je-Eun Cha ◽  
Jungwoo Kim ◽  
Yu-Hee Kim ◽  
Kyung-Ha Ryu ◽  
...  

1992 ◽  
Vol 175 (1) ◽  
pp. 245-255 ◽  
Author(s):  
B K Wershil ◽  
M Tsai ◽  
E N Geissler ◽  
K M Zsebo ◽  
S J Galli

Interactions between products of the mouse W locus, which encodes the c-kit tyrosine kinase receptor, and the Sl locus, which encodes a ligand for c-kit receptor, which we have designated stem cell factor (SCF), have a critical role in the development of mast cells. Mice homozygous for mutations at either locus exhibit several phenotypic abnormalities including a virtual absence of mast cells. Moreover, the c-kit ligand SCF can induce the proliferation and maturation of normal mast cells in vitro or in vivo, and also can result in repair of the mast cell deficiency of Sl/Sld mice in vivo. We now report that administration of SCF intradermally in vivo results in dermal mast cell activation and a mast cell-dependent acute inflammatory response. This effect is c-kit receptor dependent, in that it is not observed when SCF is administered to mice containing dermal mast cells expressing functionally inactive c-kit receptors, is observed with both glycosylated and nonglycosylated forms of SCF, and occurs at doses of SCF at least 10-fold lower on a molar basis than the minimally effective dose of the classical dermal mast cell-activating agent substance P. These findings represent the first demonstration in vivo that a c-kit ligand can result in the functional activation of any cellular lineage expressing the c-kit receptor, and suggest that interactions between the c-kit receptor and its ligand may influence mast cell biology through complex effects on proliferation, maturation, and function.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Eri Takematsu ◽  
Sanjana Srinath ◽  
Michael Sherman ◽  
Andrew K Dunn ◽  
Aaron Baker

Introduction: The current standard cares for peripheral artery disease (PAD) include surgical revascularizations with bypass grafting or percutaneous interventions. However, these interventions cannot be performed in a significant portion of patients, and many do not respond to these surgical procedures. Protein therapy to stimulate the body to create new vasculature is another alternative, which is minimally invasive to patients. Stem cell factor (SCF) is a candidate protein for treating PAD, but clinical use of SCF has been limited due to toxicity related to mast cell activation. SCF also exists in a transmembrane form (tmSCF), possessing differential activities from soluble SCF and has not been explored as a therapeutic agent. Results: To develop tmSCF as a therapeutic we created tmSCF embedded in liposome or lipid nanodisc (Fig. A) . Hindlimb ischemia model on WT and ob/ob mice showed that tmSCF proteliposome (tmSCFPL) and nanodisc (tmSCFND) improved blood flow recovery significantly more than control (Fig. B, C) . Mouse model of anaphylaxis revealed that tmSCF-based therapies did not activate mast cells (Fig. D, E) . Colocalization assay of c-Kit and clathrin/caveolin revealed that mast cells preferentially use clathrin-mediated pathways to internalize SCF and caveolin-mediated pathways for tmSCF-based therapies (Fig. F, G) . Surface c-Kit internalization study on mast cells showed faster uptake of SCF in comparison to tmSCF-based therapies (Fig. H) . Previous study indicates that clathrin-mediated internalization causes increased activation of mast cells. Our studies together with the previous finding suggest that mast cell activation does not occur for tmSCF-based therapies because of the slower uptake, greater utilization of the caveolin internalization pathway and weaker activation of mast cells. Conclusions: TmSCF-based therapies can provide therapeutic benefits without off-target effects on mast cells by tuning activation with nanocarriers.


2006 ◽  
Vol 118 (1) ◽  
pp. 108-116 ◽  
Author(s):  
Osamu Niide ◽  
Yoshihiro Suzuki ◽  
Tetsuro Yoshimaru ◽  
Toshio Inoue ◽  
Tadatoshi Takayama ◽  
...  

2012 ◽  
Vol 188 (11) ◽  
pp. 5428-5437 ◽  
Author(s):  
Tomonobu Ito ◽  
Daniel Smrž ◽  
Mi-Yeon Jung ◽  
Geethani Bandara ◽  
Avanti Desai ◽  
...  

2003 ◽  
Vol 33 (8) ◽  
pp. 2262-2268 ◽  
Author(s):  
Anna M. Feldweg ◽  
Daniel S. Friend ◽  
Joseph S. Zhou ◽  
Yoshihide Kanaoka ◽  
Massoud Daheshia ◽  
...  

2009 ◽  
Vol 297 (1) ◽  
pp. G34-G42 ◽  
Author(s):  
Shaoyong Yu ◽  
Guofeng Gao ◽  
Blaise Z. Peterson ◽  
Ann Ouyang

Sensitization of esophageal sensory afferents by inflammatory mediators plays an important role in esophageal nociception. We have shown esophageal mast cell activation induces long-lasting mechanical hypersensitivity in vagal nodose C-fibers. However, the roles of mast cell mediators and downstream ion channels in this process are unclear. Mast cell tryptase via protease-activated receptor 2 (PAR2)-mediated pathways sensitizes sensory nerves and induces hyperalgesia. Transient receptor potential A1 (TRPA1) plays an important role in mechanosensory transduction and nociception. Here we tested the hypothesis that mast cell activation via a PAR2-dependent mechanism sensitizes TRPA1 to induce mechanical hypersensitivity in esophageal vagal C-fibers. The expression profiles of PAR2 and TRPA1 in vagal nodose ganglia were determined by immunostaining, Western blot, and RT-PCR. Extracellular recordings from esophageal nodose neurons were performed in ex vivo guinea pig esophageal-vagal preparations. Action potentials evoked by esophageal distention and chemical perfusion were compared. Both PAR2 and TRPA1 expressions were identified in vagal nodose neurons by immunostaining, Western blot, and RT-PCR. Ninety-one percent of TRPA1-positive neurons were of small and medium diameters, and 80% coexpressed PAR2. Esophageal mast cell activation significantly enhanced the response of nodose C-fibers to esophageal distension (mechanical hypersensitivity). This was mimicked by PAR2-activating peptide, which sustained for 90 min after wash, but not by PAR2 reverse peptide. TRPA1 inhibitor HC-030031 pretreatment significantly inhibited mechanical hypersensitivity induced by either mast cell activation or PAR2 agonist. Collectively, our data provide new evidence that sensitizing TRPA1 via a PAR2-dependent mechanism plays an important role in mast cell activation-induced mechanical hypersensitivity of vagal nodose C-fibers in guinea pig esophagus.


2020 ◽  
Author(s):  
Eri Takematsu ◽  
Jeff Auster ◽  
Po-Chih Chen ◽  
Sanjana Srinath ◽  
Sophia Canga ◽  
...  

AbstractStem cell factor (SCF) is a cytokine that regulates hematopoiesis and other biological processes. While clinical treatments using SCF would be highly beneficial, these have been limited by toxicity related to mast cell activation. Transmembrane SCF (tmSCF) has differential activity from soluble SCF and has not been explored as a therapeutic agent. We created novel therapeutics using tmSCF embedded in proteoliposomes or lipid nanodiscs. Mouse models of anaphylaxis and ischemia revealed the tmSCF-based therapies did not activate mast cells and improved the revascularization in the ischemic hind limb. Proteoliposomal tmSCF preferentially acted on endothelial cells to induce angiogenesis while tmSCF nanodiscs had greater activity in inducing stem cell mobilization and recruitment to the site of injury. The type of lipid nanocarrier used altered the relative cellular uptake pathways and signaling in a cell type dependent manner. Overall, we found that tmSCF-based therapies can provide therapeutic benefits without off target effects.


Sign in / Sign up

Export Citation Format

Share Document