Lateral response of ultra‐high performance concrete columns confined with high‐strength spiral stirrups

2020 ◽  
Author(s):  
Wei Chang ◽  
Wenzhong Zheng ◽  
Meijing Hao
Author(s):  
C. Sauer ◽  
F. Bagusat ◽  
M.-L. Ruiz-Ripoll ◽  
C. Roller ◽  
M. Sauer ◽  
...  

AbstractThis work aims at the characterization of a modern concrete material. For this purpose, we perform two experimental series of inverse planar plate impact (PPI) tests with the ultra-high performance concrete B4Q, using two different witness plate materials. Hugoniot data in the range of particle velocities from 180 to 840 m/s and stresses from 1.1 to 7.5 GPa is derived from both series. Within the experimental accuracy, they can be seen as one consistent data set. Moreover, we conduct corresponding numerical simulations and find a reasonably good agreement between simulated and experimentally obtained curves. From the simulated curves, we derive numerical Hugoniot results that serve as a homogenized, mean shock response of B4Q and add further consistency to the data set. Additionally, the comparison of simulated and experimentally determined results allows us to identify experimental outliers. Furthermore, we perform a parameter study which shows that a significant influence of the applied pressure dependent strength model on the derived equation of state (EOS) parameters is unlikely. In order to compare the current results to our own partially reevaluated previous work and selected recent results from literature, we use simulations to numerically extrapolate the Hugoniot results. Considering their inhomogeneous nature, a consistent picture emerges for the shock response of the discussed concrete and high-strength mortar materials. Hugoniot results from this and earlier work are presented for further comparisons. In addition, a full parameter set for B4Q, including validated EOS parameters, is provided for the application in simulations of impact and blast scenarios.


Author(s):  
Ariful Hasnat ◽  
Nader Ghafoori

AbstractThis study aimed to determine the abrasion resistance of ultra-high-performance concretes (UHPCs) for railway sleepers. Test samples were made with different cementitious material combinations and varying steel fiber contents and shapes, using conventional fine aggregate. A total of 25 UHPCs and two high-strength concretes (HSCs) were selected to evaluate their depth of wear and bulk properties. The results of the coefficient of variation (CV), relative gain in abrasion, and abrasion index of the studied UHPCs were also obtained and discussed. Furthermore, a comparison was made on the resistance to wear of the selected UHPCs with those of the HSCs typically used for prestressed concrete sleepers. The outcomes of this study revealed that UHPCs displayed excellent resistance against abrasion, well above that of HSCs. Amongst the utilized cementitious material combinations, UHPCs made with silica fume as a partial replacement of cement performed best against abrasion, whereas mixtures containing fly ash showed the highest depth of wear. The addition of steel fibers had a more positive influence on the abrasion resistance than it did on compressive strength of the studied UHPCs.


2018 ◽  
Vol 149 ◽  
pp. 01005 ◽  
Author(s):  
Arezki Tagnit-Hamou ◽  
Ablam Zidol ◽  
Nancy Soliman ◽  
Joris Deschamps ◽  
Ahmed Omran

Ground-glass pozzolan (G) obtained by grinding the mixed-waste glass to same fineness of cement can act as a supplementary-cementitious material (SCM), given that it is an amorphous and a pozzolanic material. The G showed promising performances in different concrete types such as conventional concrete (CC), high-performance concrete (HPC), and ultra-high performance concrete (UHPC). The current paper reports on the characteristics and performance of G in these concrete types. The use of G provides several advantages (technological, economical, and environmental). It reduces the production cost of concrete and decrease the carbon footprint of a traditional concrete structures. The rheology of fresh concrete can be improved due to the replacement of cement by non-absorptive glass particles. Strength and rigidity improvements in the concrete containing G are due to the fact that glass particles act as inclusions having a very high strength and elastic modulus that have a strengthening effect on the overall hardened matrix.


Sign in / Sign up

Export Citation Format

Share Document