Residual mechanical properties of concrete containing lightweight expanded clay aggregate ( LECA ) after exposure to elevated temperatures

2021 ◽  
Author(s):  
Farshad Dabbaghi ◽  
Mehdi Dehestani ◽  
Hossein Yousefpour
2019 ◽  
Vol 211 ◽  
pp. 610-629 ◽  
Author(s):  
Esmaeil Pournamazian Najafabadi ◽  
Mohammad Houshmand Khaneghahi ◽  
Hossein Ahmadie Amiri ◽  
Homayoon Esmaeilpour Estekanchi ◽  
Togay Ozbakkaloglu

Recycling of materials has become a major interest for engineers. At present, the amount of slag deposited in storage yard adds up to millions of tons/year leading to the occupation of farm land and serious pollution to the environment, as a result of the rapid growth in the steel industry. Steel slag is made at 1500- 1650°C having a honey comp shape with high porosity. Using steel slag as the natural aggregate with a lower waste material cost can be considered as a good alternative for sustainable constructions. The objective of this study is to evaluate the performance of residual mechanical properties of concrete with steel slag as coarse aggregate partial replacement after exposing to high temperatures .This study investigates the behavior of using granulated slag as partial or fully coarse aggregate replacement with different percentages of 0%, 15%, 30%, 50% and 100% in concrete when subjected to elevated temperatures. Six groups of concrete mixes were prepared using various replacement percentages of slag exposed to different temperatures of 400 °C, 600 °C and 800 °C for different durations of 1hr, 1.5hr and 2hr. Evaluation tests were compressive strength, tensile strength, and bond strength. The steel slag concrete mixes showed week workability lower than control mix. A systematic increasing of almost up to 21.7% in compressive strength, and 66.2% in tensile strength with increasing the percentage of steel slag replacement to 50%. And the results showed improvement on concrete residual mechanical properties after subjected to elevated temperatures with the increase of steel slag content. The findings of this study give an overview of the effect of steel slag coarse aggregate replacement on concrete after exposed to high temperatures.


2019 ◽  
Vol 59 (9) ◽  
pp. 1818-1829 ◽  
Author(s):  
Kai Zhang ◽  
Fangxin Wang ◽  
Yuezhao Pang ◽  
Wenyan Liang ◽  
Zhenqing Wang

2020 ◽  
Vol 10 (10) ◽  
pp. 3519 ◽  
Author(s):  
Chao-Wei Tang

In this study, the effects of individual and mixed fiber on the mechanical properties of lightweight aggregate concrete (LWC) after exposure to elevated temperatures were examined. Concrete specimens were divided into a control group (ordinary LWC) and an experimental group (fiber-reinforced LWC), and their compressive strength, elastic modulus, and flexural strength after heating to high temperatures of 400–800 °C were investigated. The four test parameters included concrete type, concrete strength, fiber type, and targeted temperature. The test results show that after exposure to 400–800 °C, the variation in mechanical properties of each group of LWC showed a trend of increasing first and then decreasing. After exposure to 400 °C, the residual mechanical properties of all specimens did not attenuate due to the drying effect of the high temperature and the more sufficient cement hydration reaction. However, after exposure to 800 °C, the residual mechanical properties significantly reduced. Overall, the mixed fiber-reinforced LWC showed a better ability to resist the loss of mechanical properties caused by high temperature. Compared with the loss of compressive strength, the flexural strength was relatively lost.


Sign in / Sign up

Export Citation Format

Share Document