Caffeine consumption during development alters spine density and recovery from repetitive mild traumatic brain injury in young adult rats

Synapse ◽  
2019 ◽  
Vol 74 (4) ◽  
Author(s):  
Jennaya Christensen ◽  
Glenn R. Yamakawa ◽  
Sabrina Salberg ◽  
Melinda Wang ◽  
Bryan Kolb ◽  
...  
Author(s):  
Swatabdi R. Kamal ◽  
Shreya Potukutchi ◽  
David J. Gelovani ◽  
Robin E. Bonomi ◽  
Srinivasu Kallakuri ◽  
...  

PLoS ONE ◽  
2017 ◽  
Vol 12 (11) ◽  
pp. e0187218 ◽  
Author(s):  
Glenn R. Yamakawa ◽  
Connor Lengkeek ◽  
Sabrina Salberg ◽  
Simon C. Spanswick ◽  
Richelle Mychasiuk

2016 ◽  
Vol 37 (5) ◽  
pp. 1763-1775 ◽  
Author(s):  
Péter Hertelendy ◽  
Ákos Menyhárt ◽  
Péter Makra ◽  
Zoltán Süle ◽  
Tamás Kiss ◽  
...  

Spreading depolarizations of long cumulative duration have been implicated in lesion development and progression in patients with stroke and traumatic brain injury. Spreading depolarizations evolve less likely in the aged brain, but it remains to be determined at what age the susceptibility to spreading depolarizations starts to decline, especially in ischemia. Spreading depolarizations were triggered by epidural electric stimulation prior and after ischemia induction in the cortex of 7–30 weeks old anesthetized rats ( n = 38). Cerebral ischemia was achieved by occlusion of both common carotid arteries. Spreading depolarization occurrence was confirmed by the acquisition of DC potential and electrocorticogram. Cerebral blood flow variations were recorded by laser-Doppler flowmetry. Dendritic spine density in the cortex was determined in Golgi-COX stained sections. Spreading depolarization initiation required increasingly greater electric charge with older age, a potential outcome of consolidation of cortical connections, indicated by altered dendritic spine distribution. The threshold of spreading depolarization elicitation increased with ischemia in all age groups, which may be caused by tissue acidosis and increased K+ conductance, among other factors. In conclusion, the brain appears to be the most susceptible to spreading depolarizations at adolescent age; therefore, spreading depolarizations may occur in young patients of ischemic or traumatic brain injury at the highest probability.


2019 ◽  
Vol 28 (3) ◽  
pp. 1363-1370 ◽  
Author(s):  
Jessica Brown ◽  
Katy O'Brien ◽  
Kelly Knollman-Porter ◽  
Tracey Wallace

Purpose The Centers for Disease Control and Prevention (CDC) recently released guidelines for rehabilitation professionals regarding the care of children with mild traumatic brain injury (mTBI). Given that mTBI impacts millions of children each year and can be particularly detrimental to children in middle and high school age groups, access to universal recommendations for management of postinjury symptoms is ideal. Method This viewpoint article examines the CDC guidelines and applies these recommendations directly to speech-language pathology practices. In particular, education, assessment, treatment, team management, and ongoing monitoring are discussed. In addition, suggested timelines regarding implementation of services by speech-language pathologists (SLPs) are provided. Specific focus is placed on adolescents (i.e., middle and high school–age children). Results SLPs are critical members of the rehabilitation team working with children with mTBI and should be involved in education, symptom monitoring, and assessment early in the recovery process. SLPs can also provide unique insight into the cognitive and linguistic challenges of these students and can serve to bridge the gap among rehabilitation and school-based professionals, the adolescent with brain injury, and their parents. Conclusion The guidelines provided by the CDC, along with evidence from the field of speech pathology, can guide SLPs to advocate for involvement in the care of adolescents with mTBI. More research is needed to enhance the evidence base for direct assessment and treatment with this population; however, SLPs can use their extensive knowledge and experience working with individuals with traumatic brain injury as a starting point for post-mTBI care.


Sign in / Sign up

Export Citation Format

Share Document