scholarly journals Advancing age and ischemia elevate the electric threshold to elicit spreading depolarization in the cerebral cortex of young adult rats

2016 ◽  
Vol 37 (5) ◽  
pp. 1763-1775 ◽  
Author(s):  
Péter Hertelendy ◽  
Ákos Menyhárt ◽  
Péter Makra ◽  
Zoltán Süle ◽  
Tamás Kiss ◽  
...  

Spreading depolarizations of long cumulative duration have been implicated in lesion development and progression in patients with stroke and traumatic brain injury. Spreading depolarizations evolve less likely in the aged brain, but it remains to be determined at what age the susceptibility to spreading depolarizations starts to decline, especially in ischemia. Spreading depolarizations were triggered by epidural electric stimulation prior and after ischemia induction in the cortex of 7–30 weeks old anesthetized rats ( n = 38). Cerebral ischemia was achieved by occlusion of both common carotid arteries. Spreading depolarization occurrence was confirmed by the acquisition of DC potential and electrocorticogram. Cerebral blood flow variations were recorded by laser-Doppler flowmetry. Dendritic spine density in the cortex was determined in Golgi-COX stained sections. Spreading depolarization initiation required increasingly greater electric charge with older age, a potential outcome of consolidation of cortical connections, indicated by altered dendritic spine distribution. The threshold of spreading depolarization elicitation increased with ischemia in all age groups, which may be caused by tissue acidosis and increased K+ conductance, among other factors. In conclusion, the brain appears to be the most susceptible to spreading depolarizations at adolescent age; therefore, spreading depolarizations may occur in young patients of ischemic or traumatic brain injury at the highest probability.

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Barbara Pijet ◽  
Marzena Stefaniuk ◽  
Leszek Kaczmarek

Traumatic brain injury (TBI) occurs when a blow to the head causes brain damage. Apart from physical trauma, it causes a wide range of cognitive, behavioral, and emotional deficits including impairments in learning and memory. On neuronal level, TBI may lead to circuitry remodeling and in effect imbalance between excitatory and inhibitory neurotransmissions. Such change in brain homeostasis may often lead to brain disorders. The basic units of neuronal connectivity are dendritic spines that are tiny protrusions forming synapses between two cells in a network. Spines are dynamic structures that undergo morphological transformation throughout life. Their shape is strictly related to an on/off state of synapse and the strength of synaptic transmission. Matrix metalloproteinase-9 (MMP-9) is an extrasynaptically operating enzyme that plays a role in spine remodeling and has been reported to be activated upon TBI. The aim of the present study was to evaluate the influence of MMP-9 on dendritic spine density and morphology following controlled cortical impact (CCI) as animal model of TBI. We examined spine density and dendritic spine shape in the cerebral cortex and the hippocampus. CCI caused a marked decrease in spine density as well as spine shrinkage in the cerebral cortex ipsilateral to the injury, when compared to sham animals and contralateral side both 1 day and 1 week after the insult. Decreased spine density was also observed in the dentate gyrus of the hippocampus; however, in contrast to the cerebral cortex, spines in the DG became more filopodia-like. In mice lacking MMP-9, no effects of TBI on spine density and morphology were observed.


Synapse ◽  
2019 ◽  
Vol 74 (4) ◽  
Author(s):  
Jennaya Christensen ◽  
Glenn R. Yamakawa ◽  
Sabrina Salberg ◽  
Melinda Wang ◽  
Bryan Kolb ◽  
...  

2019 ◽  
Author(s):  
Emily L. Dennis ◽  
Karen Caeyenberghs ◽  
Robert F. Asarnow ◽  
Talin Babikian ◽  
Brenda Bartnik-Olson ◽  
...  

Traumatic brain injury (TBI) is a major cause of death and disability in children in both developed and developing nations. Children and adolescents suffer from TBI at a higher rate than the general population; however, research in this population lags behind research in adults. This may be due, in part, to the smaller number of investigators engaged in research with this population and may also be related to changes in safety laws and clinical practice that have altered length of hospital stays, treatment, and access to this population. Specific developmental issues also warrant attention in studies of children, and the ever-changing context of childhood and adolescence may require larger sample sizes than are commonly available to adequately address remaining questions related to TBI. The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Pediatric Moderate-Severe TBI (msTBI) group aims to advance research in this area through global collaborative meta-analysis. In this paper we discuss important challenges in pediatric TBI research and opportunities that we believe the ENIGMA Pediatric msTBI group can provide to address them. We conclude with recommendations for future research in this field of study.


2014 ◽  
Vol 13 (04) ◽  
pp. 579-593 ◽  
Author(s):  
Meng Wang ◽  
Hongjian Pu ◽  
Yingchao Liu ◽  
Zengtao Wang ◽  
Bomin Wang ◽  
...  

2013 ◽  
pp. 27-38
Author(s):  
Sandra A. Acosta ◽  
Naoki Tajiri ◽  
Paula C. Bickford ◽  
Cesar V. Borlongan

Author(s):  
Swatabdi R. Kamal ◽  
Shreya Potukutchi ◽  
David J. Gelovani ◽  
Robin E. Bonomi ◽  
Srinivasu Kallakuri ◽  
...  

BMC Neurology ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Ola Skaansar ◽  
Cathrine Tverdal ◽  
Pål Andre Rønning ◽  
Karoline Skogen ◽  
Tor Brommeland ◽  
...  

Abstract Background Ageing is associated with worse treatment outcome after traumatic brain injury (TBI). This association may lead to a self-fulfilling prophecy that affects treatment efficacy. The aim of the current study was to evaluate the role of treatment bias in patient outcomes by studying the intensity of diagnostic procedures, treatment, and overall 30-day mortality in different age groups of patients with TBI. Methods Included in this study was consecutively admitted patients with TBI, aged ≥ 15 years, with a cerebral CT showing intracranial signs of trauma, during the time-period between 2015–2018. Data were extracted from our prospective quality control registry for admitted TBI patients. As a measure of management intensity in different age groups, we made a composite score, where placement of intracranial pressure monitor, ventilator treatment, and evacuation of intracranial mass lesion each gave one point. Uni- and multivariate survival analyses were performed using logistic multinomial regression. Results A total of 1,571 patients with TBI fulfilled the inclusion criteria. The median age was 58 years (range 15–98), 70% were men, and 39% were ≥ 65 years. Head injury severity was mild in 706 patients (45%), moderate in 437 (28%), and severe in 428 (27%). Increasing age was associated with less management intensity, as measured using the composite score, irrespective of head injury severity. Multivariate analyses showed that the following parameters had a significant association with an increased risk of death within 30 days of trauma: increasing age, severe comorbidities, severe TBI, Rotterdam CT-score ≥ 3, and low management intensity. Conclusion The present study indicates that the management intensity of hospitalised patients with TBI decreased with advanced age and that low management intensity was associated with an increased risk of 30-day mortality. This suggests that the high mortality among elderly TBI patients may have an element of treatment bias and could in the future be limited with a more aggressive management regime.


Sign in / Sign up

Export Citation Format

Share Document